Search

found 18 results

Audio, Radio New Zealand

Repatriation, innovation, virtual reality and other digital opportunities and issues around earthquake strengthening buildings will all come up for debate next weekend at our museums' national conference in Christchurch. The MA18 Conference brings together several hundred museum leaders to talk about a time of rapid change in how museums display their taonga and how they reach out to their communities. Lynn Freeman spoke to Phillipa Tocker who's the Executive Director of Museums Aotearoa, and to one of the guest speakers, futurist Kaila Colbin who's curator of TEDxChristchurch and TEDxScottBase, co-founder and Chair of the Ministry of Awesome and a director of ChristchurchNZ which is responsible for tourism, major events and economic development in the city.

Audio, Radio New Zealand

Architect Bob Burnett is part of a class action group yet to resolve claims with Southern Response. The group argues the insurer, which was established to settle outstanding AMI claims, has systematically short-changed them. Mr Burnett said the insurer had done more damage to his home than had been done in the earthquakes. The 40 members of the class action group head to court next Wednesday.

Research papers, University of Canterbury Library

Land cover change information in urban areas supports decision makers in dealing with public policy planning and resource management. Remote sensing has been demonstrated as an efficient and accurate way to monitor land cover change over large extents. The Canterbury Earthquake Sequence (CES) caused massive damage in Christchurch, New Zealand and resulted in significant land cover change over a short time period. This study combined two types of remote sensing data, aerial imagery (RGB) and LiDAR, as the basis for quantifying land cover change in Christchurch between 2011 – 2015, a period corresponding to the five years immediately following the 22 February 2011 earthquake, which was part of the CES. An object based image analysis (OBIA) approach was adopted to classify the aerial imagery and LiDAR data into seven land cover types (bare land, building, grass, shadow, tree and water). The OBIA approach consisted of two steps, image segmentation and object classification. For the first step, this study used multi-level segmentation to better segment objects. For the second step, the random forest (RF) classifier was used to assign a land cover type to each object defined by the segmentation. Overall classification accuracies for 2011 and 2015 were 94.0% and 94.32%, respectively. Based on the classification result, land cover changes between 2011 and 2015 were then analysed. Significant increases were found in road and tree cover, while the land cover types that decreased were bare land, grass, roof, water. To better understand the reasons for those changes, land cover transitions were calculated. Canopy growth, seasonal differences and forest plantation establishment were the main reasons for tree cover increase. Redevelopment after the earthquake was the main reason for road area growth. By comparing the spatial distribution of these transitions, this study also identified Halswell and Wigram as the fastest developing suburbs in Christchurch. These results provided quantitative information for the effects of CES, with respect to land cover change. They allow for a better understanding for the current land cover status of Christchurch. Among those land cover changes, the significant increase in tree cover aroused particularly interest as urban forests benefit citizens via ecosystem services, including health, social, economic, and environmental benefits. Therefore, this study firstly calculated the percentages of tree cover in Christchurch’s fifteen wards in order to provide a general idea of tree cover change in the city extent. Following this, an automatic individual tree detection and crown delineation (ITCD) was undertaken to determine the feasibility of automated tree counting. The accuracies of the proposed approach ranged between 56.47% and 92.11% in thirty different sample plots, with an overall accuracy of 75.60%. Such varied accuracies were later found to be caused by the fixed tree detection window size and misclassifications from the land cover classification that affected the boundary of the CHM. Due to the large variability in accuracy, tree counting was not undertaken city-wide for both time periods. However, directions for further study for ITCD in Christchurch could be exploring ITCD approaches with variable window size or optimizing the classification approach to focus more on producing highly accurate CHMs.

Research papers, University of Canterbury Library

The level of destruction from the 2011 Christchurch earthquakes led to changes in the New Zealand seismic building code. The destruction showed that the NZ building codes did not fully performed to expectation and needed Improvement to ensure that impact of future earthquakes would be minimised. The building codes have been amended to improve buildings resilience to earthquake and other related extreme loading conditions. Rebuilding Christchurch with the new modifications in the seismic building code comes with its own unique challenges to the entire system. This project investigates the impact of rebuilding Christchurch with the new seismic Building codes in terms of how the new changes affected the building industry and the management of construction.

Research papers, University of Canterbury Library

This research aims to explore how business models of SMEs revolve in the face of a crisis to be resilient. The business model canvas was used as a tool to analyse business models of SMEs in Greater Christchurch. The purpose was to evaluate the changes SMEs brought in their business models after hit by a series of earthquake in 2010 and 2011. The idea was to conduct interviews of business owners and analyse using grounded theory methods. Because this method is iterative, a tentative theoretical framework was proposed, half way through the data collection. It was realised that owner specific characteristics were more prominent in the data than the elements business model. Although, SMEs in this study experienced several operational changes in their business models such as change of location and modification of payment terms. However, the suggested framework highlights how owner specific attributes influence the survival of a small business. Small businesses and their owners are extremely interrelated that the business models personify the owner specific characteristics. In other words, the adaptation of the business model reflects the extent to which the owner possess these attributes. These attributes are (a) Mindsets – the attitude and optimism of business owner; (b) Adaptive coping – the ability of business owner to take corrective actions; and (c) Social capital – the network of a business owner, including family, friends, neighbours and business partners.

Audio, Radio New Zealand

A review of the week's news including... The bill to fix botched EQC repairs from the Canterbury earthquakes is now four times what the previous Government predicted just two years ago, immigrants are being computer profiled, MPs are told that medicinal cannabis should be legalised for more people, Middlemore Hospital's woes continue, the Government orders a compulsory recall of 50 thousand vehicles with faulty airbags, Auckland drivers face a double tax hike under proposed sweeping changes to transport funding, Parliament changes the law so New Zealand men with historical homosexual convictions can have them wiped, a bus company wants to recruit more than 100 drivers from overseas because it can't find enough people to do the job here, Dunedin has its biggest weekend ever in terms of money spent thanks to Ed Sheeran, first it was closing - now it's not, Kaikohe's Warehouse is to stay, it all comes together for the New Zealand cricket team against England, an international consortium reaches a verbal agreement to buy the New Zealand Warriors and the woman who was RNZ's Washington correspondent for more than 20 years has died.

Audio, Radio New Zealand

Disaster teams in Papua New Guinea are still struggling to reach parts of the country hit hard by Monday's 7-point-5 earthquake: the Tongan branch of aid agency Live and Learn is still busy helping people patch up their homes two weeks on from the battering dished out by Cyclone Gita: Oceania leaders of the Anglican church gathering in Fiji will be looking at better preparing their people for natural disasters at a fono this week in Suva attended by the Archbishop of Canterbury; Pacific people call for more influence on global issues that affect the region's rapidly changing climate; a mould problem in Australia's refugee detention centre on Nauru posed a serious health threat.

Research papers, University of Canterbury Library

Smart cities utilise new and innovative technology to improve the function of the city for governments, citizens and businesses. This thesis offers an in-depth discussion on the concept of the smart city and sets the context of smart cities internationally. It also examines how to improve a smart city through public engagement, as well as, how to implement participatory research in a smart city project to improve the level of engagement of citizens in the planning and implementation of smart projects. This thesis shows how to incentivise behaviour change with smart city technology and projects, through increasing participation in the planning and implementation of smart technology in a city. Meaningful data is created through this process of participation for citizens in the city, by engaging the citizens in the creation of the data, therefore the information created through a smart city project is created by and for the citizens themselves. To improve engagement, a city must understand its specific context and its residents. Using Christchurch, New Zealand, and the Christchurch City Council (CCC) Smart City Project as a case study, this research engages CCC stakeholders in the Smart City Project through a series of interviews, and citizens in Christchurch through a survey and focus groups. A thorough literature review has been conducted, to illuminate the different definitions of the smart city in academia, business and governments respectively, and how these definitions vary from one another. It provides details of a carefully selected set of relevant smart cities internationally and will discuss how the Christchurch Earthquake Sequence of 2010 and 2011 has affected the CCC Smart City Project. The research process, alongside the literature review, shows diverse groups of citizens in the city should be acknowledged in this process. The concept of the smart city is redefined to incorporate the context of Christchurch, its citizens and communities. Community perceptions of smart cities in Christchurch consider the post-disaster environment and this event and subsequent rebuild process should be a focus of the smart city project. The research identified that the CCC needs to focus on participatory approaches in the planning and implementation of smart projects, and community organisations in Christchurch offer an opportunity to understand community perspectives on new smart technology and that projects internationally should consider how the context of the city will affect the participation of its residents. This project offers ideas to influence the behaviour change of citizens through a smart city project. Further research should consider other stakeholders, for instance, innovation and technology-focused business in the city, and to fully engage citizens, future research must continue the process of participatory engagement, and target diverse groups in the city, including but not limited to minority groups, older and younger generations, and those with physical and mental disabilities.

Research papers, University of Canterbury Library

Natural hazard reviews reveal increases in disaster impacts nowhere more pronounced than in coastal settlements. Despite efforts to enhance hazard resilience, the common trend remains to keep producing disaster prone places. This paper explicitly explores hazard versus multi-hazard concepts to illustrate how different conceptualizations can enhance or reduce settlement resilience. Understandings gained were combined with onthe-ground lessons from earthquake and flooding experiences to develop of a novel ‘first cut’ approach for analyzing key multi-hazard interconnections, and to evaluate resilience enhancing opportunities. Traditional disaster resilience efforts often consider different hazard types discretely. However, recent events in Christchurch, a New Zealand city that is part of the 100 Resilient Cities network, highlight the need to analyze the interrelated nature of different hazards, especially for enhancing lifelines system resilience. Our overview of the Christchurch case study demonstrates that seismic, hydrological, shallow-earth, and coastal hazards can be fundamentally interconnected, with catastrophic results where such interconnections go unrecognized. In response, we have begun to develop a simple approach for use by different stakeholders to support resilience planning, pre and post disaster, by: drawing attention to natural and built environment multi-hazard links in general; illustrating a ‘first cut’ tool for uncovering earthquake-flooding multi-hazard links in particular; and providing a basis for reviewing resilience strategy effectiveness in multi-hazard prone environments. This framework has particular application to tectonically active areas exposed to climate-change issues.

Research papers, University of Canterbury Library

Cats all over the world hunt wild animals and can contribute to the extinction of threatened species. In New Zealand, around half of all households have at least one cat. When cats live close to a natural area, such as a wetland, they may have impacts on native species. A previous study on the movements and hunting behaviour of domestic (house) cats around the Travis Wetland, Christchurch, New Zealand during 2000-2001 raised concerns about the effects of cats on the local skink population, as skinks were a frequent prey item. My study is a comparison to the prior study, to determine if impacts have changed alongside changes in human populations in the area post-earthquake. The domestic cat population in the area was estimated by a household survey in March-April 2018. For a 6 month period from March-September 2018, 26 households recorded prey brought home by their 41 cats. During April-July 2018, 14 cats wore Global Positioning System (GPS) devices for 7 days each to track their movements. Skink abundance was measured with pitfall trapping over 20 days in February 2018. There were more households in the area in 2018 than there were in 2000, but the numbers of cats had decreased. In the 196 ha study area around Travis Wetland, the domestic cat population was estimated at 429 cats, down from the previous 494. Most of the cats were free roaming, but the majority had been desexed and many were mostly seen at home. A total of 42 prey items were reported from 26 households and 41 cats over 6 months. Of these, 62% were rodents, 26% were exotic birds, and 12% were native birds. There were no native skinks, other mammals, or other vertebrates such as fish and amphibians (invertebrates were not included in this study). Eight male and six female cats were tracked by GPS. Home range sizes for the 100% minimum convex polygons (MCPs) ranged from 1.34 to 9.68 ha (mean 4.09 ha, median 3.54 ha). There were 9/14 (64%) cats that entered the edge of the wetland. Males had significantly larger home range areas at night and in general compared with females. However, age and distance of the cat’s household to the wetland did not have a significant effect on home range size and there was no significant correlation between home range size and prey retrieved. In 20 days of skink trapping, 11 Oligosoma polychroma were caught. The estimated catch rate was not significantly different from an earlier study on skink abundance in Travis Wetland. The apparently low abundance of skinks may have been the result of successful wetland restoration creating less suitable skink habitat, or of other predators other than cats. In the future, increased education should be provided to the public about ways to increase wildlife in their area. This includes creating lizard friendly habitat in their gardens and increasing management for cats. Generally, only a few cats bring home prey often, and these select cats should be identified in initial surveys and included in further studies. In New Zealand, until management programmes can target all predators in urban areas, domestic cats could stay out at night and inside during the day to help decrease the abundance of rodents at night and reduce the number of birds and lizards caught during the day.

Research papers, University of Canterbury Library

By closely examining the performance of a 22-storey steel framed building in Christchurch subject to various earthquakes over the past seven years, it is shown that a number of lessons can be learnt regarding the cost-effective consideration of non-structural elements. The first point in this work is that non-structural elements significantly affected the costs associated with repairing steel eccentrically braced frame (EBF) links. The decommissioning or rerouting of non-structural elements in the vicinity of damaged links in the case study building attributed to approximately half the total cost of their repair. Such costs could be significantly reduced if the original positioning of non-structural elements took account of the potential need to repair the EBF links. The second point highlighted is the role that pre-cast cladding apparently played on the distribution and type of damage in the building. Loss estimates obtained following the FEMA P-58 framework vary considerably when cladding is or isnt modelled, both because of changes to drift demands up the height of the building and because certain types of subsequent damage are likely to be cheaper to repair than others. Finally, costly repairs to non-structural partition walls were required not only after the moment magnitude 7.1 earthquake in 2010 but also in multiple aftershocks in the years that followed. Repair costs associated with aftershock events exceeded those from the main event, emphasizing the need to consider aftershocks within modern performance-based earthquake engineering and also the opportunity that exists to make more cost-effective repair strategies following damaging earthquakes.

Research papers, University of Canterbury Library

The nonlinear dynamic soil-foundation-structure interaction (SFSI) can signifi cantly affect the seismic response of buildings, causing additional deformation modes, damage and repair costs. Because of nonlinear foundation behaviour and interactions, the seismic demand on the superstructure may considerably change, and also permanent deformations at the foundation level may occur. Although SFSI effects may be benefi cial to the superstructure performance, any advantage would be of little structural value unless the phenomenon can be reliably controlled and exploited. Detrimental SFSI effects may also occur, including acceleration and displacement response ampli cation and differential settlements, which would be unconservative to neglect. The lack of proper understanding of the phenomenon and the limited available simpli ed tools accounting for SFSI have been major obstacles to the implementation of integrated design and assessment procedures into the everyday practice. In this study concepts, ideas and practical tools (inelastic spectra) for the seismic design and assessment of integrated foundation-superstructure systems are presented, with the aim to explicitly consider the impact of nonlinearities occurring at the soil-foundation interface on the building response within an integrated approach, where the foundation soil and superstructure are considered as part of an integrated system when evaluating the seismic response, working synergically for the achievement of a target global performance. A conceptual performance-based framework for the seismic design and assessment of integrated foundation-superstructure systems is developed. The framework is based on the use of peak and residual response parameters for both the superstructure and the foundation, which are then combined to produce the system performance matrix. Each performance matrix allows for worsening of the performance when different contributions are combined. An attempt is made to test the framework by using case histories from the 2011 Christchurch earthquake, which are previously shown to have been severely affected by nonlinear SFSI. The application highlights the framework sensitivity to the adopted performance limit states, which must be realistic for a reliable evaluation of the system performance. Constant ductility and constant strength inelastic spectra are generated for nonlinear SFSI systems (SDOF nonlinear superstructure and 3DOF foundation allowing for uplift and soil yielding), representing multistorey RC buildings with shallow rigid foundations supported by cohesive soils. Different ductilities/strengths, hysteretic rules (Bi-linear, Takeda and Flag-Shape), soil stiffness and strength and bearing capacity factors are considered. Footings and raft foundations are investigated, characterized respectively by constant (3 and 8) and typically large bearing capacity factors. It is confi rmed that when SFSI is considered, the superstructure yielding force needed to satisfy a target ductility for a new building changes, and that similarly, for an existing building, the ductility demand on a building of a given strength varies. The extent of change of seismic response with respect to xed-base (FB) conditions depends on the class of soils considered, and on the bearing capacity factor (SF). For SF equal to 3, the stiffer soils enhance the nonlinear rotational foundation behaviour and are associated with reduced settlement, while the softer ones are associated with increased settlement response but not signi ficant rotational behaviour. On average terms, for the simplifi ed models considered, SFSI is found to be bene cial to the superstructure performance in terms of acceleration and superstructure displacement demand, although exceptions are recorded due to ground motion variability. Conversely, in terms of total displacement, a signi cant response increase is observed. The larger the bearing capacity factor, the more the SFSI response approaches the FB system. For raft foundation buildings, characterized by large bearing capacity factors, the impact of foundation response is mostly elastic, and the system on average approaches FB conditions. Well de fined displacement participation factors to the peak total lateral displacement are observed for the different contributions (i.e. peak foundation rotation and translation and superstructure displacement). While the superstructure and foundation rotation show compensating trends, the foundation translation contribution varies as a function of the moment-to-shear ratio, becoming negligible in the medium-to-long periods. The longer the superstructure FB period, the less the foundation response is signifi cant. The larger the excitation level and the less ductile the superstructure, the larger the foundation contribution to the total lateral displacement, and the less the superstructure contribution. In terms of hysteretic behaviour, its impact is larger when the superstructure response is more signifi cant, i.e. for the softer/weaker soils and larger ductilities. Particularly, for the Flag Shape rule, larger superstructure displacement participation factors and smaller foundation contributions are recorded. In terms of residual displacements, the total residual-to-maximum ratios are similar in amplitudes and trends to the corresponding FB system responses, with the foundation and superstructure contributions showing complementary trends. The impact of nonlinear SFSI is especially important for the Flag Shape hysteresis rule, which would not otherwise suffer of any permanent deformations. By using the generated peak and residual inelastic spectra (i.e. inelastic acceleration/ displacement modifi cation factor spectra, and/or participation factor and residual spectra), conceptual simplifi ed procedures for the seismic design and assessment of integrated foundation-superstructure systems are presented. The residual displacements at both the superstructure and foundation levels are explicitly considered. Both the force- and displacement-based approaches are explored. The procedures are de fined to be complementary to the previously proposed integrated performance-based framework. The use of participation factor spectra allows the designer to easily visualize the response of the system components, and could assist the decision making process of both the design and assessment of SFSI systems. The presented numerical results have been obtained using simpli ed models, assuming rigid foundation behaviour and neglecting P-Delta effects. The consideration of more complex systems including asymmetry in stiffness, mass, axial load and ground conditions with a exible foundation layout would highlight detrimental SFSI effects as related to induced differential settlements, while accounting for PDelta effects would further amplify the displacement response. Also, the adopted acceleration records were selected and scaled to match conventional design spectra, thus not representing any response ampli cation in the medium-to-long period range which could as well cause detrimental SFSI effects. While these limitations should be the subject of further research, this study makes a step forward to the understanding of SFSI phenomenon and its incorporation into performance-based design/assessment considerations.

Research papers, University of Canterbury Library

Farming and urban regions are impacted by earthquake disasters in different ways, and feature a range of often different recovery requirements. In New Zealand, and elsewhere, most earthquake impact and recovery research is urban focused. This creates a research deficit that can lead to the application of well-researched urban recovery strategies in rural areas to suboptimal effect. To begin to reduce this deficit, in-depth case studies of the earthquake impacts and recovery of three New Zealand farms severely impacted by the 14th November 2016, M7.8 Hurunui-Kaikōura earthquake were conducted. The initial earthquake, its aftershocks and coseismic hazards (e.g., landslides, liquefaction, surface rupture) affected much of North Canterbury, Marlborough and the Wellington area. The three case study farms were chosen to broadly represent the main types of farming and topography in the Hurunui District in North Canterbury. The farms were directly and indirectly impacted by earthquakes and related hazards. On-farm infrastructure (e.g., woolsheds, homesteads) and essential services (e.g., water, power), frequently sourced from distributed networks, were severely impacted. The earthquake occurred after two years of regional drought had already stressed farm systems and farmers to restructuring or breaking point. Cascading interlinked hazards stemming from the earthquakes and coseismic hazards continued to disrupt earthquake recovery over a year after the initial earthquake. Semi-structured interviews with the farmers were conducted nine and fourteen months after the initial earthquake to capture the timeline of on-going impacts and recovery. Analysis of both geological hazard data and interview data resulted in the identification of key factors influencing farm level earthquake impact and recovery. These include pre-existing conditions (e.g., drought); farm-specific variations in recovery timelines; and resilience strategies for farm recovery resources. The earthquake recovery process presented all three farms with opportunities to change their business plans and adapt to mitigate on-going and future risk.

Research papers, University of Canterbury Library

On November 14 2016 a magnitude 7.8 earthquake struck the south island of New Zealand. The earthquake lasted for just two minutes with severe seismic shaking and damage in the Hurunui and Kaikōura districts. Although these are predominantly rural areas, with scattered small towns and mountainous topography, they also contain road and rail routes that are essential parts of the national transport infrastructure. This earthquake and the subsequent recovery are of particular significance as they represent a disaster following in close proximity to another similar disaster, with the Canterbury earthquakes occurring in a neighboring district five years earlier. The research used an inductive qualitative case study to explore the nature of the Kaikōura recovery. That recovery process involved a complex interplay between the three parties; (a) the existing local government in the district, (b) central government agencies funding the recovery of the local residents and the national transport infrastructure, and (c) recovery leaders arriving with recent expertise from the earlier Canterbury disaster. It was evident that three groups: locals, government, and experts represented a multi-party governance debate in which the control of the Kaikōura earthquake recovery was shared amongst them. Each party had their own expertise, adgenda and networks that they brought to the Kaikōura recovery, but this created tensions between external expertise and local, community leadership. Recent earthquake research suggests that New Zealand is currently in the midst of an earthquake cluster, with further seismic disasters likely to occur in relatively close succession. This is likely to be compounded by the increasing frequency of other natural disasters with the effects of climate change. The present study investigates a phenomenon that may become increasingly common, with the transfer of disaster expertise from one event to another, and the interface between those experts with local and national government in directing recoveries. The findings of this study have implications for practitioners and policy makers in NZ and other countries where disasters are experienced in close spatial and temporal proximity.

Research papers, Victoria University of Wellington

<b>In the late 1960s the Wellington City Council surveyed all the commercial buildings in the city and marked nearly 200 as earthquake prone. The owners were given 15 years to either strengthen or demolish their buildings. The end result was mass demolition throughout the seventies and eighties.¹ Prompted by the Christchurch earthquakes, once again the council has published a list of over 630 earthquake prone buildings that need to be strengthened or demolished by 2030.²Of these earthquake prone buildings, the majority were built between 1880 and 1930, with 125 buildings appearing on the Wellington City Council Heritage Building List.³ This list accounts for a significant proportion of character buildings in the city. There is a danger that the aesthetic integrity of our city will be further damaged due to the urgent need to strengthen these buildings. Many of the building owners are resistant because of the high cost. By adapting these buildings to house co-workspaces, we can gain more than just the retention of the building’s heritage. The seismic upgrade provides the opportunity for the office space to be redesigned to suit changes in the ways we work. Through a design-based research approach this thesis proposes a framework that clarifies the process of adapting Wellington’s earthquake prone heritage buildings to accommodate co-working. This framework deals with the key concepts of program, structure and heritage. The framework is tested on one of Wellington’s earthquake prone heritage buildings, the Wellington Working Men’s Club, in order to demonstrate what can be gained from this strengthening process. ¹ Reid, J., “Hometown Boomtown,” in NZ On Screen (Wellington, 1983).</b> ² Wellington City Council, List of Earthquake Prone Buildings as at 06/03/2017. (Wellington: Absolutely Positively Wellington. 2017). ³ ibid. 

Research papers, University of Canterbury Library

The Leader Fault was one of at least 17 faults that ruptured the ground surface across the northeastern South Island of New Zealand during the Mw 7.8 2016 Kaikōura Earthquake. The southern ~6 km of the Leader Fault, here referred to as the South Leader Fault (SLF), ruptured the North Canterbury (tectonic) Domain and is the primary focus of this study. The main objective of the thesis is to understand the key factors that contributed to the geometry and kinematics of the 2016 SLF rupture and its intersection with The Humps Fault (HF). This thesis employs a combination of techniques to achieve the primary objective, including detailed mapping of the bedrock geology, geomorphology and 2016 rupture, measurement of 2016 ground surface displacements, kinematic analysis of slip vectors from the earthquake, and logging of a single natural exposure across a 2016 rupture that was treated as a paleoseismic trench. The resulting datasets were collected in the field, from terrestrial LiDAR and InSAR imagery, and from historical (pre-earthquake) aerial photographs for a ~11 km2 study area. Surface ruptures in the study area are a miniature version of the entire rupture from the earthquake; they are geometrically and kinematically complex, with many individual and discontinuous segments of varying orientations and slip senses which are distributed across a zone up to ~3.5 km wide. Despite this variability, three main groups of ruptures have been identified. These are: 1) NE-SW striking, shallow to moderate dipping (25-45°W) faults that are approximately parallel to Cenozoic bedding with mainly reverse dip-slip and, and for the purposes of this thesis, are considered to be part of the SLF. 2) N-S striking, steeply dipping (~85°E) oblique sinistral faults that are up to the west and part of the SLF. 3) E-NE striking, moderate to steeply dipping (45-68°N) dextral reverse faults which are part of the HF. Bedding-parallel faults are interpreted to be flexural slip structures formed during folding of the near-surface Cenozoic strata, while the steeply dipping SLF ruptured a pre-existing bedrock fault which has little topographic expression. Groups 1 and 2 faults were both locally used for gravitational failure during the earthquake. Despite this non-tectonic fault movement, the slip vectors for faults that ruptured during the earthquake are broadly consistent with NCD tectonics and the regional ~100-120° trend of the principal horizontal stress/strain axes. Previous earthquake activity on the SLF is required by its displacement of Cenozoic formations but Late Quaternary slip on the fault prior to 2016 is neither supported by pre-existing fault scarps nor by changes in topography across the fault. By contrast, at least two earthquakes (including 2016) appear to have ruptured the HF from the mid Holocene, consistent with recurrence intervals of no more than ~7 kyr, and with preliminary observations from trenches on the fault farther to the west. The disparity in paleoearthquake records of the two faults suggests that they typically do not rupture together, thus it is concluded that the HF-SLF rupture pattern observed in the Kaikōura Earthquake rarely occurs in a single earthquake.

Research papers, University of Canterbury Library

The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.