Search

found 20 results

Videos, UC QuakeStudies

A video of a press conference with Bishop Victoria Matthews in the Botanic Gardens about the plans for the earthquake-damaged ChristChurch Cathedral. Matthews announces that the cathedral will be deconstructed, allowing the safe retrieval of taonga and heritage items within the building.

Videos, UC QuakeStudies

A video of an interview with Mayumi Asakawa, a Japanese student from Kanagawa prefecture who was in Christchurch during the 22 February 2011 earthquake. Asakawa returned to Christchurch to ring the Peace Bell in the Botanic Gardens during the Festival of Flowers commemorative ceremony.

Videos, UC QuakeStudies

A video of the Christchurch central city covered in snow. The video includes footage of the ChristChurch Cathedral, Gloucester Street, New Regent Street, Manchester Street, Latimer Square, Centennial Pool, Armagh Street, McLeans Mansion, Hagley Park, Rolleston Avenue, Worcester Street, the Peacock Fountain in the Botanic Gardens, and Dyers Pass Road.

Articles, Christchurch uncovered

If you walk along the Avon River by Cashel Street you might catch a glimpse of the small gondolas taking their fares for a leisurely punt through the city and botanical gardens. Today this attraction is aimed largely at tourists, … Continue reading →

Videos, UC QuakeStudies

A video of the 2016 Civic Earthquake Memorial Service, held to mark the fifth anniversary of the 22 February 2011 earthquake. The service was held on the Archery Lawn in the Christchurch Botanic Gardens at midday on 22 February 2016. The service was filmed for the Christchurch City Council by Alan Radford of Multicam TV.

Videos, UC QuakeStudies

A video of a press conference with Anglican Bishop Victoria Matthews and Dean Peter Beck, about the interim plans for the earthquake-damaged ChristChurch Cathedral. In the press conference Matthews announces that the Cathedral will be deconsecrated, that parts of it will be demolished, and that the rest will be made safe. These measures will allow the recovery of artefacts and heritage items from the building.

Videos, NZ On Screen

The Mainland Touch was a popular regional news magazine programme broadcast from Christchurch between 1980 until 1990. In excerpts here, Christchurch Botanic Gardens welcomes the arrival of spring with a daffodil festival while local gardening groups prepare a floral carpet. The Wizard of Christchurch battles Telecom over the colour of phone boxes and joins opponents of a proposed restaurant tower in Victoria Square. Punting on the Avon is extended, and a cockatoo hitches a ride in the garden city.

Research papers, University of Canterbury Library

Earthquakes cause significant damage to buildings due to strong vibration of the ground. Levitating houses using magnets and electromagnets would provide a complete isolation of ground motion for protecting buildings from seismic damage. Two types of initial configuration for the electromagnet system were proposed with the same air gap (10mm) between the electromagnet and reluctance plate. Both active and passive controller are modelled to investigate the feasibility of using a vibration control system for stabilizing the magnetic system within the designed air gap (10mm) in the vertical direction. A nonlinear model for the magnetic system is derived to implement numerical simulation of structural response under the earthquake record in Christchurch Botanic Gardens on 21 February 2011. The performance of the uncontrolled and the controlled systems are compared and the optimal combination of control gains are determined for the PID active controller. Simulation results show both active PID controller with constant and nonlinear attracting force are able to provide an effective displacement control within the required air gap (+/-5mm). The maximum control force demand for the PID controller in the presence of nonlinear attracting force is 4.1kN, while the attracting force in equilibrium position is 10kN provided by the electromagnet. These results show the feasibility of levitating a house using the current electromagnet and PID controller. Finally, initial results of passive control using two permanent magnets or dampers show the structural responses can be effectively reduced and centralized to +/-1mm using a nonlinear centring barrier function.