A photograph of Pomeroy's Pub, taken from Oxford Terrace, across the Avon River.
A photograph looking down the Avon River to the house at 2 Bangor Street.
A photograph of the house at 2 Bangor Street, taken from across the Avon River.
These have been thrown in the Avon River
This will open up the street to the Avon River
Work is continuing on the earthquake damaged South New Brighton bridge. Avon River to the left, Avon-Heathcote Estuary the other side of the bridge.
A PDF copy of pages 54-55 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'River of Flowers - Te Waitohi Maumahara'. Page 54 photographs: Healthy Chch. Page 55 photograph: Mike Moss.
Lincoln University was commissioned by the Avon-Otakaro Network (AvON) to estimate the value of the benefits of a ‘recreation reserve’ or ‘river park’ in the Avon River Residential Red Zone (ARRRZ). This research has demonstrated significant public desire and support for the development of a recreation reserve in the Avon River Residential Red Zone. Support is strongest for a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision, such as walking, cycling and water-based sporting and leisure activities. The research also showed support for a reserve that promotes and enables community interaction and wellbeing, and is evident in respondents’ desires for community gardens, regular festivals and markets, and the physical linking of the CBD with eastern suburbs through a green corridor. There is less support for children’s playgrounds, sports fields or open grassed areas, all of which could be considered as more typical of an urban park development. Benefits (willing to pay) to Christchurch residents (excluding tourists) of a recreation reserve could be as high as $35 million each year. Savings to public health costs could be as high as $50.3 million each year. The incorporation or restoration of various ecosystems services, including water quality improvements, flood mitigation and storm water management could yield a further $8.8 million ($19, 600) per hectare/year at 450 ha). Combined annual benefits of a recreational reserve in the ARRRZ are approximately $94.1 million per annum but this figure does not include potentially significant benefits from, for example, tourism, property equity gains in areas adjacent to the reserve, or the effects of economic rejuvenation in the East. Although we were not able to provide costing estimates for park attributes, this study does make available the value of benefits, which can be used as a guide to the scope of expenditure on development of each park attribute.
A PDF copy of pages 42-43 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Oxford Terrace Temporary Streetscape and Interpretation'. Photo: Tim Church. With permission: Christchurch City Council.
A video telling the story of a Dallington house which was built by Bill Cooper in 1957. The house was demolished last month as part of the clearance of the Christchurch residential red zone. The story of the house is used to illustrate what is happening in many Christchurch suburbs. The video also includes the story of a sea elephant that lived in the Avon River in the 1970s and 1980s.
When I was a kid this bit of land in the foreground was level and extended at least three times further out, but after the earthquakes you can see the angle that land near the river slumped. We used to catch a lot of herrings (yellow -eyed mullet) here when I was a kid, hence the local name of Herring Bay. Across the river is the Bexley Wetlands.
All this is "red zone" after the earthquakes and has to be demolished. The roof of my "old" house (now owned by the government) can be seen between the third and fourth river-side houses.
None
For six weeks after the February 2011 Christchurch earthquake millions of litres of raw sewage - along with lots of liquefaction - poured into the Avon and Heathcote Rivers. A team of biologists quickly got to work to measure the impact of this catastrophe on life in the Heathcote River and as they tell Alison Ballance, they were surprised by what they recorded over the next few months.
A video of the removal of the earthquake-damaged Medway Street bridge from the banks of the Avon River. The video shows members of the Stronger Christchurch Infrastructure Rebuild Team removing the bridge and preparing it for transport to the Ferrymead Heritage Park. It will remain at the park until a permanent home can be found for it as an earthquake memorial.
There are occasional sewerage spills into the Avon River while all the sewer and road repairs are carried out. This rock wall was level and well above high tide level prior to the eathquakes. All the houses that can been seen here (except for those on the distant Port Hills) are in the suburban "red zone" and are still to be demolished.
The area beside the lower Avon River in New Brighton of Evans Avenue and Admirals Way has been cleared of houses and boundary fences (there were between 15 and 20 houses on this block) , fully fenced with post and wire and "spray on" grass applied. These were all red zone properties acquired by the crown after the land was deemed too damaged t...
Prior to the earthquakes (mainly the February 22 2011 event) this park bench was at track level. Shortly after the February quake someone in the council did the sums and realised that the area near the Avon River had dropped between a metre and 1.4m (about 4 foot), so a rush job by contractors shifted in many tonnes of rock and gravel to raise a...
In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.
The 2010 Darfield and 2011 Christchurch Earthquakes triggered extensive liquefaction-induced lateral spreading proximate to streams and rivers in the Christchurch area, causing significant damage to structures and lifelines. A case study in central Christchurch is presented and compares field observations with predicted displacements from the widely adopted empirical model of Youd et al. (2002). Cone penetration testing (CPT), with measured soil gradation indices (fines content and median grain size) on typical fluvial deposits along the Avon River were used to determine the required geotechnical parameters for the model input. The method presented attempts to enable the adoption of the extensive post-quake CPT test records in place of the lower quality and less available Standard Penetration Test (SPT) data required by the original Youd model. The results indicate some agreement between the Youd model predictions and the field observations, while the majority of computed displacements error on the side of over-prediction by more than a factor of two. A sensitivity analysis was performed with respect to the uncertainties used as model input, illustrating the model’s high sensitivity to the input parameters, with median grain size and fines content among the most influential, and suggesting that the use of CPT data to quantify these parameters may lead to variable results.
The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.