
The Foundation facilitates community engagement and communication through their website, providing service delivery, volunteer co-ordination and service to assist with the rebuild of Christchurch and Canterbury following the earthquakes of 2010 and 2011.
Catholic Basilica, Christchurch - at the right place, at the right time...
"Open Theatre" - The Odeon Built in 1883 and known as the Tuam Street Hall or Theatre and was New Zealand's oldest masonry, purpose built theatre. In 1930, it became the St. James Theatre, It became The Odeon Movie Theatre in 1960. Demolition started in September 2012 after the Christchurch earthquakes of 2010/2011 but seems to have stopped!?
Messages strung on rope by the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1217.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.
Flowers left under the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1215.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.
Flowers left under the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1214.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.
Messages strung on rope by the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1216.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.
Messages strung on rope by the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1218.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.
None
The 2010–2011 Canterbury earthquake sequence began with the 4 September 2010, Mw7.1 Darfield earthquake and includes up to ten events that induced liquefaction. Most notably, widespread liquefaction was induced by the Darfield and Mw6.2 Christchurch earthquakes. The combination of well-documented liquefaction response during multiple events, densely recorded ground motions for the events, and detailed subsurface characterization provides an unprecedented opportunity to add well-documented case histories to the liquefaction database. This paper presents and applies 50 high-quality cone penetration test (CPT) liquefaction case histories to evaluate three commonly used, deterministic, CPT-based simplified liquefaction evaluation procedures. While all the procedures predicted the majority of the cases correctly, the procedure proposed by Idriss and Boulanger (2008) results in the lowest error index for the case histories analyzed, thus indicating better predictions of the observed liquefaction response.
The progressive damage and subsequent demolition of unreinforced masonry (URM) buildings arising from the Canterbury earthquake sequence is reported. A dataset was compiled of all URM buildings located within the Christchurch CBD, including information on location, building characteristics, and damage levels after each major earthquake in this sequence. A general description of the overall damage and the hazard to both building occupants and to nearby pedestrians due to debris falling from URM buildings is presented with several case study buildings used to describe the accumulation of damage over the earthquake sequence. The benefit of seismic improvement techniques that had been installed to URM buildings is shown by the reduced damage ratios reported for increased levels of retrofit. Demolition statistics for URM buildings in the Christchurch CBD are also reported and discussed. VoR - Version of Record
Christchurch and its surrounding towns are slowly starting to be rebuilt after the devastating earthquakes of 2010 and 2011. Our political editor Brent Edwards has been in Christchurch to find out whether the rebuild debate will dominate the election campaign in the city.
Cats, dogs, horses, parrots, rats, hedgehogs and turtles. Just like people, these animals were affected by the earthquakes in Christchurch. And two researchers have published a new book into just how big the impact of the September 2010 and February 2011 earthquakes were. 'Animals in Emergencies: Learning from the Christchurch Earthquakes' is co-authored by Canterbury University's associate professor Annie Potts, and former veterinary nurse Donelle Gadenne.
This is an interim report from the research study performed within the NHRP Research Project “Impacts of soil liquefaction on land, buildings and buried pipe networks: geotechnical evaluation and design, Project 3: Seismic assessment and design of pipe networks in liquefiable soils”. The work presented herein is a continuation of the comprehensive study on the impacts of Christchurch earthquakes on the buried pipe networks presented in Cubrinovski et al. (2011). This report summarises the performance of Christchurch City’s potable water, waste water and road networks through the 2010-2011 Canterbury Earthquake Sequence (CES), and particularly focuses on the potable water network. It combines evidence based on comprehensive and well-documented data on the damage to the water network, detailed observations and interpretation of liquefaction-induced land damage, records and interpretations of ground motion characteristics induced by the Canterbury earthquakes, for a network analysis and pipeline performance evaluation using a GIS platform. The study addresses a range of issues relevant in the assessment of buried networks in areas affected by strong earthquakes and soil liquefaction. It discusses performance of different pipe materials (modern flexible pipelines and older brittle pipelines) including effects of pipe diameters, fittings and pipeline components/details, trench backfill characteristics, and severity of liquefaction. Detailed breakdown of key factors contributing to the damage to buried pipes is given with reference to the above and other relevant parameters. Particular attention is given to the interpretation, analysis and modelling of liquefaction effects on the damage and performance of the buried pipe networks. Clear link between liquefaction severity and damage rate for the pipeline has been observed with an increasing damage rate seen with increasing liquefaction severity. The approach taken here was to correlate the pipeline damage to LRI (Liquefaction Resistance Index, newly developed parameter in Cubrinovski et al., 2011) which represents a direct measure for the soil resistance to liquefaction while accounting for the seismic demand through PGA. Key quality of the adopted approach is that it provides a general methodology that in conjunction with conventional methods for liquefaction evaluation can be applied elsewhere in New Zealand and internationally. Preliminary correlations between pipeline damage (breaks km-1), liquefaction resistance (LRI) and seismic demand (PGA) have been developed for AC pipes, as an example. Such correlations can be directly used in the design and assessment of pipes in seismic areas both in liquefiable and non-liquefiable areas. Preliminary findings on the key factors for the damage to the potable water pipe network and established empirical correlations are presented including an overview of the damage to the waste water and road networks but with substantially less detail. A comprehensive summary of the damage data on the buried pipelines is given in a series of appendices.
20140522_8951_EOS M-22 Demolition Of what many in Christchurch know as the Millers building, but for many recent years was the home to the Christchurch City Council, till just a week or two before the first earthquake of 2010. Now, in mid-2014 it is finally being demolished after nearly 45 months empty. A bus is leaving the new (temporary) bu...
The paper presents preliminary findings from comprehensive research studies on the liquefaction-induced damage to buildings and infrastructure in Christchurch during the 2010-2011 Canterbury earthquakes. It identifies key factors and mechanisms of damage to road bridges, shallow foundations of CBD buildings and buried pipelines, and highlights the implications of the findings for the seismic analysis and design of these structures.
The Catholic Cathedral is classified as a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes of 2010 and 2011. In the 2010 event the building presented slight to moderta damage, meanwhile in the 2011 one experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to develop the earthquake analysis of the building by 3D numerical simulations, and the results are compared/calibrated with the observed damage of the 2010 earthquake. Very accurate records were obtained during both earthquakes due to a record station located least than 80 m of distance from the building and used in the simulations. Moreover it is included in the model the soil structure interaction because it was observed that the ground and foundation played an important role on the seismic behavior of the structure. A very good agreement was found between the real observed damage and the nonlinear dynamic simulations described trough inelastic deformation (cracking) and building´s performance.
External stairs on the Forsyth Barr building in Christchurch. Portions of the internal stairwell collapsed during the earthquake of February 22nd 2011, necessitating use of various means of getting people out of the building. Was the fourth highest building in the city pre earthquakes, but it's future is uncertain. Was for sale "as is, where ...
A video of an interview with Alison Naylor about her flooded house on Francis Avenue. Naylor talks about the lack of communication from the Christchurch City Council. She says that the flooding is worse than the liquefaction from the 2010 and 2011 Canterbury earthquakes.
The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the unsatisfactory performance of several RC wall buildings during the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of RC walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to the New Zealand Concrete Structures Standard. A database summarising the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and initial numerical modeling and small-scale tests are presented in addition to details of planned experimental tests of RC walls. Numerical modelling is being used to understand the potential influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls. The results from finite element analysis of a severely damaged RC wall in Christchurch highlighted the effect that the floor diaphragms have on the distribution of shear stains in the wall.
The sign reads: The CTV Building was headquarters of Canterbury Television (CTV) and also housed King’s Education language School, a medical clinic, Hair Consultants, Relationship Services and a nursing school. On February 22nd 2011 the building collapsed as a result of a major earthquake. Sadly, 115 people who were in the building lost their l...
This presentation discusses recent empirical ground motion modelling efforts in New Zealand. Firstly, the active shallow crustal and subduction interface and slab ground motion prediction equations (GMPEs) which are employed in the 2010 update of the national seismic hazard model (NSHM) are discussed. Other NZ-specific GMPEs developed, but not incorporated in the 2010 update are then discussed, in particular, the active shallow crustal model of Bradley (2010). A brief comparison of the NZ-specific GMPEs with the near-source ground motions recorded in the Canterbury earthquakes is then presented, given that these recordings collectively provide a significant increase in observed strong motions in the NZ catalogue. The ground motion prediction expert elicitation process that was undertaken following the Canterbury earthquakes for active shallow crustal earthquakes is then discussed. Finally, ongoing GMPE-related activities are discussed including: ground motion and metadata database refinement, improved site characterization of strong motion station, and predictions for subduction zone earthquakes.
Between September 4, 2010 and December 23, 2011, a series of earthquakes struck the South Island of New Zealand including the city of Christchurch producing heavy damage. During the strongest shaking, the unreinforced masonry (URM) building stock in Christchurch was subjected to seismic loading equal to approximately 150-200% of code values. Post-earthquake reconnaissance suggested numerous failures of adhesive anchors used for retrofit connection of roof and floor diaphragms to masonry walls. A team of researchers from the Universities of Auckland (NZ) and Minnesota (USA) conducted a field investigation on the performance of new adhesive anchors installed in existing masonry walls. Variables included adhesive type, anchor diameter, embedment length, anchor inclination, and masonry quality. Buildings were selected that had been slated for demolition but which featured exterior walls that had not been damaged. A summary of the deformation response measured during the field tests are presented. AM - Accepted Manuscript
"Prior to the devastating 2010-2011 Canterbury earthquakes, the city of Christchurch was already exhibiting signs of a housing affordability crisis. The causes and symptoms were similar to those being experienced in Auckland, but the substantial damage to the housing stock caused by the earthquakes added new dimensions and impetus to the problem. Large swathes of the most affordable housing stock in the east of the city were effectively destroyed by the earthquakes. In itself this would have pushed the mean house price upwards, but compounding problems exacerbated the situation. These include the price effects of reduced supply of both rented and owned housing and increased demand from both displaced residents and an influx of rebuild workers. The need for additional temporary housing while repairs were undertaken and the associated insurance pay-outs bidding up rents with improved rental returns leading to increased interest in property investment. Land supply constraints and consenting issues inhibiting the build of new housing and political infighting and uncertainty regarding the future of parts of the city leading to a flight of development activity to peripheral locations and adjoining local authorities. Concerns that the erosion of the city council rating base combined with inadequacy of insurance cover for infrastructure will lead to large rates increases, increased development costs and reduced amenities and services in future years. These and other issuers will be elaborated on in this paper with a view to exploring the way forward for affordable housing Christchurch City."
Active faults capable of generating highly damaging earthquakes may not cause surface rupture (i.e., blind faults) or cause surface ruptures that evade detection due to subsequent burial or erosion by surface processes. Fault populations and earthquake frequency-‐magnitude distributions adhere to power laws, implying that faults too small to cause surface rupture but large enough to cause localized strong ground shaking densely populate continental crust. The rupture of blind, previously undetected faults beneath Christchurch, New Zealand in a suite of earthquakes in 2010 and 2011, including the fatal 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake and other large aftershocks, caused a variety of environmental impacts, including major rockfall, severe liquefaction, and differential surface uplift and subsidence. All of these effects occurred where geologic evidence for penultimate effects of the same nature existed. To what extent could the geologic record have been used to infer the presence of proximal, blind and / or unidentified faults near Christchurch? In this instance, we argue that phenomena induced by high intensity shaking, such as rock fragmentation and rockfall, revealed the presence of proximal active faults in the Christchurch area prior to the recent earthquake sequence. Development of robust earthquake shaking proxy datasets should become a higher scientific priority, particularly in populated regions.
The performance of conventionally designed reinforced concrete (RC) structures during the 2011 Christchurch earthquake has demonstrated that there is greater uncertainty in the seismic performance of RC components than previously understood. RC frame and wall structures in the Christchurch central business district were observed to form undesirable cracks patterns in the plastic hinge region while yield penetration either side of cracks, and into development zones, were less than theoretical predictions. The implications of this unexpected behaviour: (i) significantly less available ductility; (ii) less hysteretic energy dissipation; and (iii) the localization of peak reinforcement strains, results in considerable doubt for the residual capacity of RC structures. The significance of these consequences has prompted a review of potential sources of uncertainty in seismic experimentation with the intention to improve the current confidence level for newly designed conventional RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, to consider the influence of loading history, concrete tensile strength, and reinforcement ratio on the performance of ‘real’ RC structures compared to experimental test specimens.
Christchurch's historic Theatre Royal will reopen for business in November, with bookings about to open for the first show, the Royal New Zealand Ballet season of "A Christmas Carol" The 106-year old theatre has been closed for almost four years because of earthquake damage in the 2010 and 2011 earthquakes. The $40million rebuild and restoration project will be completed over the next five months and on 17 November 2014, the 'Grand Old Lady' of New Zealand theatre will reopen her doors for performances. With so few venues for performance left in the city, including the Town Hall out of commission indefinitely, the rebuild of the Theatre Royal is very good news for Christchurch audiences Chief executive Neil Cox explains the process of getting oldest Edwardian theatre in the country back in use and mounting the large scale theatrical productions it has been famous for.
The disastrous earthquakes that struck Christchurch in 2010 and 2011 seriously impacted on the individual and collective lives of Māori residents. This paper continues earlier, predominantly qualitative research on the immediate effects on Māori by presenting an analysis of a survey carried out 18 months after the most destructive event, on 22 February 2011. Using a set-theoretic approach, pathways to Māori resilience are identified, emphasising the combination of whānau connectivity and high incomes in those who have maintained or increased their wellbeing post-disaster. However, the results show that if resilience is used to describe a “bounce back” in wellbeing, Māori are primarily enduring the post-disaster environment. This endurance phase is a precursor to any resilience and will be of much longer duration than first thought. With continued uncertainty in the city and wider New Zealand economy, this endurance may not necessarily lead to a more secure environment for Māori in the city.
Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.
A video of a press conference with Christchurch Mayor Lianne Dalziel and Raf Manji, Chair of the Christchurch City Council Finance Committee, about the KordaMentha report. KordaMentha is an independent auditing firm which specialises in insolvencies and corporate recovery. The report analysed the Christchurch City Council's three year budgeting plan and the financial strategies that lay behind it. Much of this budget dealt with the challenges in Christchurch caused by the 2010 and 2011 earthquakes. Dalziel talks about the cost of mending Christchurch's infrastructure, the Council's insurance settlement, and the need to address the findings in the report. Manji talks about the Council's financial options following the report.