Back in 2011, a slightly rusty three speed bike abandoned after the September earthquake on a demolition site in Christchurch caught the attention of John Smithies. He's 72, only slightly older than the bike, and he decided it would be just the bicycle to take on a epic, 2000 kilometre journey from Cape Reinga to Bluff. He started in September and expects to reach Bluff on Friday. He's making the epic journey in memory of his wife, Alison who died two years ago of a form of non-Hodgkin lymphoma. The ride down State Highway One is raising money for leukemia and blood cancer.
Since the 2010/11 Canterbury earthquakes, Akaroa has been hosting the majority of cruise ship
arrivals to Canterbury. This amounts to approximately 70-74 days per season, when between 2,000-
4,000 persons come ashore between 9am and 4pm when in port. This increased level of cruise ship
arrivals has had significant impacts, both beneficial and detrimental, on Akaroa. Attitudes within the
Akaroa community to hosting cruise ship arrivals appear to be divided, and has led to public debate
in Akaroa about the issue. In response to this situation, Christchurch and Canterbury Tourism (CCT)
commissioned this research project to assess the impact of cruise ship tourism on the Akaroa
community.This research was commissioned and funded by Christchurch and Canterbury Tourism (CCT).
In this paper, the characteristics of near-fault ground motions recorded during the Mw7.1 Darfield and Mw 6.2 Christchurch earthquakes are examined and compared with existing empirical models. The characteristics of forward-directivity effects are first examined using a wavelet-based pulse-classification algorithm. This is followed by an assessment of the adequacy of empirical models which aim to capture the effect of directivity effects on amplifying the acceleration response spectra; and the period and peak velocity of the forward-directivity pulse. It is illustrated that broadband directivity models developed by Somerville et al. (1997) and Abrahamson (2000) generally under-predict the observed amplification of response spectral ordinates at longer vibration periods. In contrast, a recently developed narrowband model by Shahi and Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods surrounding the directivity pulse period. Although the empirical predictions of the pulse period are generally favourable for the Christchurch earthquake, the observations from the Darfield earthquake are significantly under-predicted. The elongation in observed pulse periods is inferred as being a result of the soft sedimentary soils of the Canterbury basin. However, empirical predictions of the observed peak velocity associated with the directivity pulse are generally adequate for both events.