Search

found 4563 results

Images, UC QuakeStudies

Former Labour Party leader, Phil Goff, talking to students assembling wheelbarrows for the Student Volunteer Army at the University of Canterbury. The wheelbarrows will be used to clear silt from Christchurch properties.

Images, UC QuakeStudies

Wheelbarrows being returned to Burwood Park by students from the University of Canterbury. The students have been using them to clear liquefaction from Christchurch properties as part of the Student Volunteer Army.

Images, UC QuakeStudies

Wheelbarrows being returned to Burwood Park by students from the University of Canterbury. The students have been using them to clear liquefaction from Christchurch properties as part of the Student Volunteer Army.

Research papers, University of Canterbury Library

In this paper we apply Full waveform tomography (FWT) based on the Adjoint-Wavefield (AW) method to iteratively invert a 3-D geophysical velocity model for the Canterbury region (Lee, 2017) from a simple initial model. The seismic wavefields was generated using numerical solution of the 3-D elastodynamic/ visco- elastodynamic equations (EMOD3D was adopted (Graves, 1996)), and through the AW method, gradients of model parameters (compression and shear wave velocity) were computed by implementing the cross-adjoint of forward and backward wavefields. The reversed-in-time displacement residual was utilized as the adjoint source. For inversion, we also account for the near source/ station effects, gradient precondition, smoothening (Gaussian filter in spatial domain) and optimal step length. Simulation-to-observation misfit measurements based on 191 sources at 78 seismic stations in the Canterbury region (Figure 1) were used into our inversion. The inversion process includes multiple frequency bands, starting from 0-0.05Hz, and advancing to higher frequency bands (0-0.1Hz and 0-0.2Hz). Each frequency band was used for up to 10 iterations or no optimal step length found. After 3 FWT inversion runs, the simulated seismograms computed using our final model show a good matching with the observed seismograms at frequencies from 0 - 0.2 Hz and the normalized least-squared misfit error has been significantly reduced. Over all, the synthetic study of FWT shows a good application to improve the crustal velocity models from the existed geological models and the seismic data of the different earthquake events happened in the Canterbury region.

Images, UC QuakeStudies

A photograph of University of Canterbury Geology staff and students using ground penetrating radar (GPR) to survey land on the Greendale faultline. From left: Thomas Wilson, Dewiyani Bealing, Zach Whitman and Matt Cockcroft.

Audio, UC QuakeStudies

An audio recording of a mayoral debate hosted by Generation Zero in partnership with 350 Christchurch. The event was titled Mayoral Debate: a climate-smart Christchurch. It was held on campus at the University of Canterbury on Thursday 22 September, 2016 and was moderated by Catarina Gutierrez of the Ministry of Awesome. The debate was structured as follows: Section 1: Candidates answered set questions sent prior to the event Section 2: Candidates answered set questions they have not seen before Interval Section 3: Candidates answered written questions from the audience (climate-related questions were submitted during the interval and a selection of these were given to the moderator). The audio recording was taken through the University's Echo system.

Images, UC QuakeStudies

A photograph of participants in the walk to celebrate Chinese National Day and the Moon Festival. In the foreground, there are two performers doing a lion dance. The walk was held at the Upper Riccarton Library in September 2015. It was organised by the Canterbury Migrants Centre (formerly the Christchurch Migrants Centre) and was part of the Christchurch City Council's Walking Festival.

Images, UC QuakeStudies

A photograph of the earthquake-damaged Stone Chamber of the Canterbury Provincial Council Buildings on Durham Street North. Large sections of the Chamber have collapsed and the masonry and other rubble has spilled onto the footpath in front. To the left scaffolding constructed up the side of the building has also collapsed and twisted out of shape. Wire fences have been placed along the side of the building as a cordon.

Images, UC QuakeStudies

An image from a Army News March 2011 article titled, "An Army Being Led to Win". The image shows Defence Force personnel during an operational tour of Lyttelton taken by Commander Joint Forces, Air Marshal Peter Stockwell and Chief of Army Tim Keating to view the aftermath of the Christchurch Earthquake. In the background, the HMNZS Canterbury can be seen.

Research papers, University of Canterbury Library

Abstract This study provides a simplified methodology for pre-event data collection to support a faster and more accurate seismic loss estimation. Existing pre-event data collection frameworks are reviewed. Data gathered after the Canterbury earthquake sequences are analysed to evaluate the relative importance of different sources of building damage. Conclusions drawns are used to explore new approaches to conduct pre-event building assessment.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura.

Images, UC QuakeStudies

Prime Minister John Key preparing for a photograph with members of the USAID Disaster Assistance Response Team (DART) outside the US headquarters in Latimer Square. Canterbury Recovery Minister Jerry Brownlee is standing behind him.

Images, UC QuakeStudies

Students from the University of Canterbury enjoying a barbeque lunch break in Burwood Park amongst their wheelbarrows and shovels. The students have volunteered to dig up liquefaction as part of the Student Volunteer Army.

Images, UC QuakeStudies

Students from the University of Canterbury enjoying a barbeque lunch break in Burwood Park amongst their wheelbarrows and shovels. The students have volunteered to dig up liquefaction as part of the Student Volunteer Army.