Search

found 2984 results

Audio, Radio New Zealand

There's good news of sorts on the building-inspection front in Auckland. After nearly seven days of fanning out across the city inspecting damaged buildings - the biggest such deployment of building inspectors since the Christchurch earthquake emergency - the operation will be scaled back this weekend.  There are currently around 95 inspectors in the field who have checked 3,500 buildings. As of 6pm last night 190 buildings were red stickered, and a further 790 yellow stickered. The most red stickered areas are Mount Albert/Mt Eden with 54 and the North Shore with 32. Auckland Council general manager building consents Ian McCormick spoke to Corin Dann. 

Images, UC QuakeStudies

Large cracks run through the brick cladding of this house in Wainoni. The photographer comments, "During the numerous earthquakes in Christchurch the land which ran alongside the Avon river on Avonside Drive slumped towards the waterway. Houses which were wooden framed and had an external brick veneer started to sink into the liquefied soil. This caused the brick walls to crack, but the houses' occupants though shook up were saved by the wooden framework from the houses collapsing on them".

Research papers, University of Canterbury Library

This paper explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the Februrary 22, 2011 earthquake, and while Lancaster Park sports stadium is still standing, it has been unused since that date and its future remains uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130 year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, post-disaster transitionality, and the im-permanence of place.

Research papers, University of Canterbury Library

For the people of Christchurch and its wider environs of Canterbury in New Zealand, the 4th of September 2010 earthquake and the subsequent aftershocks were daunting. To then experience a more deadly earthquake five months later on the 22nd of February 2011 was, for the majority, overwhelming. A total of 185 people were killed and the earthquake and continuing aftershocks caused widespread damage to properties, especially in the central city and eastern suburbs. A growing body of literature consistently documents the negative impact of experiencing natural disasters on existing psychological disorders. As well, several studies have identified positive coping strategies which can be used in response to adversities, including reliance on spiritual and cultural beliefs as well as developing resilience and social support. The lifetime prevalence of severe mental health disorders such as posttraumatic stress disorder (PTSD) occurring as a result of experiencing natural disasters in the general population is low. However, members of refugee communities who were among those affected by these earthquakes, as well as having a past history of experiencing traumatic events, were likely to have an increased vulnerability. The current study was undertaken to investigate the relevance to Canterbury refugee communities of the recent Canterbury Earthquake Recovery Authority (CERA) draft recovery strategy for Christchurch post-earthquakes. This was accomplished by interviewing key informants who worked closely with refugee communities. These participants were drawn from different agencies in Christchurch including Refugee Resettlement Services, the Canterbury Refugee Council, CERA, and health promotion and primary healthcare organisations, in order to obtain the views of people who have comprehensive knowledge of refugee communities as well as expertise in local mainstream services. The findings from the semi-structured interviews were analysed using qualitative thematic analysis to identify common themes raised by the participants. The key informants described CERA’s draft recovery strategy as a significant document which highlighted the key aspects of recovery post disaster. Many key informants identified concerns regarding the practicality of the draft recovery strategy. For the refugee communities, some of those concerns included the short consultation period for the implementation phase of the draft recovery strategy, and issues surrounding communication and collaboration between refugee agencies involved in the recovery. This study draws attention to the importance of communication and collaboration during recovery, especially in the social reconstruction phase following a disaster, for all citizens but most especially for refugee communities.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are

Research papers, University of Canterbury Library

Predicting building collapse due to seismic motion is critical in design and more so after a major event. Damaged structures can appear sound, but collapse under following major events. There can thus be significant risk in decision making after a major seismic event concerning the safe occupation of a building or surrounding areas, versus the unknown impact of unknown major aftershocks. Model-based pushover analyses are effective if the structural properties are well understood, which is not valid post-event when this risk information is most useful. This research combines Hysteresis Loop Analysis (HLA) structural health monitoring (SHM) and Incremental Dynamic Analysis (IDA) methods to determine collapse capacity and probability of collapse for a specific structure, at any time, a range of earthquake excitations to ensure robustness. The nonlinear dynamic analysis method presented enables constant updating of building performance predictions using post-event SHM results. The resulting combined methods provide near real-time updating of collapse fragility curves as events progress, quantifying the change of collapse probability or seismic induced losses for decision-making - a novel, higher resolution risk analysis than previously available. The methods are not computationally expensive and there is no requirement for a validated numerical model. Results show significant potential benefits and a clear evolution of risk. They also show clear need for extending SHM toward creating improved predictive models for analysis of subsequent events, where the Christchurch series of 2010-2011 had significant post-event aftershocks after each main event. Finally, the overall method is generalisable to any typical engineering demand parameter.

Research papers, University of Canterbury Library

In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.

Research papers, University of Canterbury Library

Spatial variations in river facies exerted a strong influence on the distribution of liquefaction features observed in Christchurch during the 2010-11 Canterbury Earthquake Sequence (CES). Liquefaction and liquefaction-induced ground deformation was primarily concentrated near modern waterways and areas underlain by Holocene fluvial deposits with shallow water tables (< 1 to 2 m). In southern Christchurch, spatial variations of liquefaction and subsidence were documented in the suburbs within inner meander loops of the Heathcote River. Newly acquired geospatial data, geotechnical reports and eye-witness discussions are compiled to provide a detailed account of the surficial effects of CES liquefaction and ground deformation adjacent to the Heathcote River. LiDAR data and aerial photography are used to produce a new series of original figures which reveal the locations of recurrent liquefaction and subsidence. To investigate why variable liquefaction patterns occurred, the distribution of surface ejecta and associated ground damage is compared with near-surface sedimentologic, topographic, and geomorphic variability to seek relationships between the near-surface properties and observed ground damages. The most severe liquefaction was concentrated within a topographic low in the suburb of St Martins, an inner meander loop of the Heathcote River, with liquefaction only minor or absent in the surrounding areas. Subsurface investigations at two sites in St Martins enable documentation of fluvial stratigraphy, the expressions of liquefaction, and identification of pre-CES liquefaction features. Excavation to water table depths (~1.5 m below the surface) across sand boils reveals multiple generations of CES liquefaction dikes and sills that cross-cut Holocene fluvial and anthropogenic stratigraphy. Based on in situ geotechnical tests (CPT) indicating sediment with a factor of safety < 1, the majority of surface ejecta was sourced from well-sorted fine to medium sand at < 5 m depth, with the most damaging liquefaction corresponding with the location of a low-lying sandy paleochannel, a remnant river channel from the Holocene migration of the meander in St Martins. In the adjacent suburb of Beckenham, where migration of the Heathcote River has been laterally confined by topography associated with the volcanic lithologies of Banks Peninsula, severe liquefaction was absent with only minor sand boils occurring closest to the modern river channel. Auger sampling across the suburb revealed thick (>1 m) clay-rich overbank and back swamp sediments that produced a stratigraphy which likely confined the units susceptible to liquefaction and prevented widespread ejection of liquefied material. This analysis suggests river migration promotes the formation and preservation of fluvial deposits prone to liquefaction. Trenching revealed the strongest CES earthquakes with large vertical accelerations favoured sill formation and severe subsidence at highly susceptible locations corresponding with an abandoned channel. Less vulnerable sites containing deeper and thinner sand bodies only liquefied in the strongest and most proximal earthquakes forming minor localised liquefaction features. Liquefaction was less prominent and severe subsidence was absent where lateral confinement of a Heathcote meander has promoted the formation of fluvial stratum resistant to liquefaction. Correlating CES liquefaction with geomorphic interpretations of Christchurch’s Heathcote River highlights methods in which the performance of liquefaction susceptibility models can be improved. These include developing a reliable proxy for estimating soil conditions in meandering fluvial systems by interpreting the geology and geomorphology, derived from LiDAR data and modern river morphology, to improve the methods of accounting for the susceptibility of an area. Combining geomorphic interpretations with geotechnical data can be applied elsewhere to identify regional liquefaction susceptibilities, improve existing liquefaction susceptibility datasets, and predict future earthquake damage.

Audio, Radio New Zealand

A heritage advocate says he is over the moon to see a special piece of this country's history restored for future generations to enjoy. Three second world war era gun emplacements have been officially opened at Godley Head near Christchurch. The concrete bunkers and network of tunnels were badly damaged in the 2011 earthquakes and have only now been repaired and had screeds of graffiti removed. At the height of the war, the guns at the entry to Lyttelton Harbour were home to two thousand army personnel. They were the main defence from an anticipated Japanese invasion. The Godley Heads Heritage Trust chair, Peter Wilkins, told Conan Young the restored emplacements will ensure this history is never forgotten.

Audio, Radio New Zealand

UAVs or Unmanned Aerial Vehicles, or drones as they&rsquo;re commonly known, are suddenly everywhere. Conservationists and academics are using them to map our rivers; engineers surveyed the interior of the earthquake damaged Christchurch Cathedral with one; and then, of course, there's the military drones used to such lethal affect in Pakistan and Yemen. Ideas visits Palmerston North's Skycam UAV &ndash; New Zealand's leading manufacture of UAVs; talks to the interim president of the Association of Unmanned Operations &ndash; a union of US drone pilots; and Professor James Cavallaro tells us about the findings of a report he co-authored: 'Living Under Drones: Death, Injury, and Trauma to Civilians from US Drone Practices in Pakistan'.

Audio, Radio New Zealand

One Christchurch business has found just the right ingredients to rise again."The Naked Baker"gave away all of their cakes and buns and baked goods to the people of North Brighton after the earthquake on February 22nd. Co-owners Darren Carlaw and Andrew Snee started the bakery, coffee roastery and mobile food business 8 years ago. The cafe had to shut for more than 2 weeks to clean up all the damage . They didn't know what to expect when the business re-opened. What they discovered is that business is up by 30% thanks in part to their ability to bring their coffee and cakes to the many offices that have moved out of the center of town.

Audio, Radio New Zealand

In 1978 world-class motorcycle designer John Britten bought a derelict stable block in Christchurch and painstakingly converted it into a home where he raised his family and built his revolutionary V1000 motorbike. The family continued to live there after his death in 1995, but were forced to abandon it when it sustained serious damage during the 2011 Canterbury earthquakes. After sitting broken and empty for six years, Isabelle Weston, John's eldest daughter, and her husband Tim undertook to restore and revamp the house with a view to running it as a B&B. The story of their epic project features in the first episode of Grand Designs New Zealand series four, which premieres on TV3, on October 3..

Images, UC QuakeStudies

The sign for Perry's Cafe has had "Shaken but not deterred" added under the name of the cafe. One of the iconic figures of two workmen painted on the side of the building, which have regularly-changed speech bubbles commenting humorously on topical subjects, are saying "Is my crack showing?" The paint has peeled from the other speech bubble, obscuring the reply. The photographer comments, "After the numerous earthquakes in Christchurch a lot of buildings were damaged and made off limits. This affected a lot of cafes and take aways, so if you were open you needed to make it known. The words missing from the speech bubble are 'Don't be silly'".

Research papers, Victoria University of Wellington

There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.

Research papers, University of Canterbury Library

Recent severe earthquakes, such as Christchurch earthquake series, worldwide have put emphasis on building resilience. In resilient systems, not only life is protected, but also undesirable economic effects of building repair or replacement are minimized following a severe earthquake. Friction connections are one way of providing structure resilience. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs), and the symmetric friction connections (SFCs) in braces of the braced frames. Experimental and numerical studies on components have been conducted internationally. However, actual building performance depends on the many interactions, occurring within a whole building system, which may be difficult to determine accurately by numerical modelling or testing of structural components alone. Dynamic inelastic testing of a full-scale multi-storey composite floor building with full range of non-structural elements (NSEs) has not yet been performed, so it is unclear if surprises are likely to occur in such a system. A 9 m tall three-storey configurable steel framed composite floor building incorporating friction-based connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. Beams and columns are designed to remain elastic during an earthquake event, with all non-linear behaviour occurring through stable sliding frictional behaviour, dissipating energy by SHJAFCs used in MRFs and SFCs in braced frames, with and without Belleville springs. Structural systems are configurable, allowing different moment and braced frame structural systems to be tested in two horizontal directions. In some cases, these systems interact with rocking frame or rocking column system in orthogonal directions subjected to unidirectional and bidirectional horizontal shaking. The structure is designed and detailed to undergo, at worst, minor damage under series of severe earthquakes. NSEs applied include precast-concrete panels, glass curtain walling, internal partitions, suspended ceilings, fire sprinkler piping as well as some other common contents. Some of the key design considerations are presented and discussed herein

Research papers, University of Canterbury Library

Surface rupture of the previously unrecognised Greendale Fault extended west-east for ~30 km across alluvial plains west of Christchurch, New Zealand, during the Mw 7.1 Darfield (Canterbury) earthquake of September 2010. Surface rupture displacement was predominantly dextral strike-slip, averaging ~2.5 m, with maxima of ~5 m. Vertical displacement was generally less than 0.75 m. The surface rupture deformation zone ranged in width from ~30 to 300 m, and comprised discrete shears, localised bulges and, primarily, horizontal dextral flexure. About a dozen buildings, mainly single-storey houses and farm sheds, were affected by surface rupture, but none collapsed, largely because most of the buildings were relatively flexible and resilient timber-framed structures and also because deformation was distributed over a relatively wide zone. There were, however, notable differences in the respective performances of the buildings. Houses with only lightly-reinforced concrete slab foundations suffered moderate to severe structural and non-structural damage. Three other buildings performed more favourably: one had a robust concrete slab foundation, another had a shallow-seated pile foundation that isolated ground deformation from the superstructure, and the third had a structural system that enabled the house to tilt and rotate as a rigid body. Roads, power lines, underground pipes, and fences were also deformed by surface fault rupture and suffered damage commensurate with the type of feature, its orientation to the fault, and the amount, sense and width of surface rupture deformation.

Research papers, Lincoln University

Millions of urban residents around the world in the coming century will experience severe landscape change – including increased frequencies of flooding due to intensifying storm events and impacts from sea level rise. For cities, collisions of environmental change with mismatched cultural systems present a major threat to infrastructure systems that support urban living. Landscape architects who address these issues express a need to realign infrastructure with underlying natural systems, criticizing the lack of social and environmental considerations in engineering works. Our ability to manage both society and the landscapes we live in to better adapt to unpredictable events and landscape changes is essential if we are to sustain the health and safety of our families, neighbourhoods, and wider community networks. When extreme events like earthquakes or flooding occur in developed areas, the feasibility of returning the land to pre-disturbance use can be questioned. In Christchurch for example, a large expanse of land (630 hectares) within the city was severely damaged by the earthquakes and judged too impractical to repair in the short term. The central government now owns the land and is currently in the process of demolishing the mostly residential houses that formed the predominant land use. Furthermore, cascading impacts from the earthquakes have resulted in a general land subsidence of .5m over much of eastern Christchurch, causing disruptive and damaging flooding. Yet, although disasters can cause severe social and environmental distress, they also hold great potential as a catalyst to increasing adaption. But how might landscape architecture be better positioned to respond to the potential for transformation after disaster? This research asks two core questions: what roles can the discipline of landscape architecture play in improving the resilience of communities so they become more able to adapt to change? And what imaginative concepts could be designed for alternative forms of residential development that better empower residents to understand and adapt the infrastructure that supports them? Through design-directed inquiry, the research found landscape architecture theory to be well positioned to contribute to goals of social-ecological systems resilience. The discipline of landscape architecture could become influential in resilience-oriented multi disciplinary collaborations, with our particular strengths lying in six key areas: the integration of ecological and social processes, improving social capital, engaging with temporality, design-led innovation potential, increasing diversity and our ability to work across multiple scales. Furthermore, several innovative ideas were developed, through a site-based design exploration located within the residential red zone, that attempt to challenge conventional modes of urban living – concepts such as time-based land use, understanding roads as urban waterways, and landscape design and management strategies that increase community participation and awareness of the temporality in landscapes.

Research papers, The University of Auckland Library

Unreinforced masonry (URM) is a construction type that was commonly adopted in New Zealand between the 1880s and 1930s. URM construction is evidently vulnerable to high magnitude earthquakes, with the most recent New Zealand example being the 22 February 2011 Mw6.3 Christchurch earthquake. This earthquake caused significant damage to a majority of URM buildings in the Canterbury area and resulted in 185 fatalities. Many URM buildings still exist in various parts of New Zealand today, and due to their likely poor seismic performance, earthquake assessment and retrofit of the remaining URM building stock is necessary as these buildings have significant architectural heritage and occupy a significant proportion of the nation’s building stock. A collaborative research programme between the University of Auckland and Reid Construction Systems was conducted to investigate an economical yet effective solution for retrofitting New Zealand’s existing URM building stock. This solution adopts the shotcrete technique using an Engineered Cementitious Composite (ECC), which is a polyvinyl alcohol fibre reinforced mortar that exhibits strain hardening characteristics. Collaborations have been formed with a number of consulting structural engineers throughout New Zealand to develop innovative and cost effective retrofit solutions for a number of buildings. Two such case studies are presented in this paper. http://www.concrete2013.com.au/technical-program/

Research papers, Victoria University of Wellington

The Mѡ=7.1 Darfield (Canterbury) earthquake struck on 4 September 2010, approximately 45 km west of Christchurch, New Zealand. It revealed a previously unknown fault (the Greendale fault) and caused billions of dollars of damage due to high peak ground velocities and extensive liquefaction. It also triggered the Mw=6.3 Christchurch earthquake on 22 February 2011, which caused further damage and the loss of 185 lives. The objective of this research was to determine the relationship between stress and seismic properties in a seismically active region using manually-picked P and S wave arrival times from the aftershock sequence between 8 September 2010-13 January 2011 to estimate shear-wave splitting (SWS) parameters, VP =VS-ratios, anisotropy (delay-time tomography), focal mechanisms, and tectonic stress on the Canterbury plains. The maximum horizontal stress direction was highly consistent in the plains, with an average value of SHmax=116 18 . However, the estimates showed variation in SHmax near the fault, with one estimate rotating by as much as 30° counter-clockwise. This suggests heterogeneity of stress at the fault, though the cause remains unclear. Orientations of the principal stresses predominantly indicate a strike-slip regime, but there are possible thrust regimes to the west and north/east of the fault. The SWS fast directions (ø) on the plains show alignment with SHmax at the majority of stations, indicating stress controlled anisotropy. However, structural effects appear more dominant in the neighbouring regions of the Southern Alps and Banks Peninsula.

Images, eqnz.chch.2010

The area beside the lower Avon River in New Brighton of Evans Avenue and Admirals Way has been cleared of houses and boundary fences (there were between 15 and 20 houses on this block) , fully fenced with post and wire and "spray on" grass applied. These were all red zone properties acquired by the crown after the land was deemed too damaged t...

Research papers, University of Canterbury Library

One of the most controversial issues highlighted by the 2010-2011 Christchurch earthquake series and more recently the 2016 Kaikoura earthquake, has been the evident difficulty and lack of knowledge and guidelines for: a) evaluation of the residual capacity damaged buildings to sustain future aftershocks; b) selection and implementation of a series of reliable repairing techniques to bring back the structure to a condition substantially the same as prior to the earthquake; and c) predicting the cost (or cost-effectiveness) of such repair intervention, when compared to fully replacement costs while accounting for potential aftershocks in the near future. As a result of such complexity and uncertainty (i.e., risk), in combination with the possibility (unique in New Zealand when compared to most of the seismic-prone countries) to rely on financial support from the insurance companies, many modern buildings, in a number exceeding typical expectations from past experiences at an international level, have ended up being demolished. This has resulted in additional time and indirect losses prior to the full reconstruction, as well as in an increase in uncertainty on the actual relocation of the investment. This research project provides the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information to assess the residual capacity of damage reinforced concrete buildings, and to evaluate the feasibility of repairing techniques, in order to support their delicate decision-making process of repair vs. demolition or replacement. Literature review on effectiveness of epoxy injection repairs, as well as experimental tests on full-scale beam-column joints shows that repaired specimens have a reduced initial stiffness compared with the undamaged specimen, with no apparent strength reduction, sometimes exhibiting higher displacement ductility capacities. Although the bond between the steel and concrete is only partially restored, it still allows the repaired specimen to dissipate at least the same amount of hysteretic energy. Experimental tests on buildings subjected to earthquake loading demonstrate that even for severe damage levels, the ability of the epoxy injection to restore the initial stiffness of the structure is significant. Literature review on damage assessment and repair guidelines suggests that there is consensus within the international community that concrete elements with cracks less than 0.2 mm wide only require cosmetic repairs; epoxy injection repairs of cracks less and 2.0 mm wide and concrete patching of spalled cover concrete (i.e., minor to moderate damage) is an appropiate repair strategy; and for severe damaged components (e.g., cracks greater than 2.0 mm wide, crushing of the concrete core, buckling of the longitudinal reinforcement) local replacement of steel and/or concrete in addition to epoxy crack injection is more appropriate. In terms of expected cracking patterns, non-linear finite element investigations on well-designed reinforced concrete beam-to-column joints, have shown that lower number of cracks but with wider openings are expected to occur for larger compressive concrete strength, f’c, and lower reinforcement content, ρs. It was also observed that the tensile concrete strength, ft, strongly affects the expected cracking pattern in the beam-column joints, the latter being more uniformly distributed for lower ft values. Strain rate effects do not seem to play an important role on the cracking pattern. However, small variations in the cracking pattern were observed for low reinforcement content as it approaches to the minimum required as per NZS 3101:2006. Simple equations are proposed in this research project to relate the maximum and residual crack widths with the steel strain at peak displacement, with or without axial load. A literature review on fracture of reinforcing steel due to low-cycle fatigue, including recent research using steel manufactured per New Zealand standards is also presented. Experimental results describing the influence of the cyclic effect on the ultimate strain capacity of the steel are also discussed, and preliminary equations to account for that effect are proposed. A literature review on the current practice to assess the seismic residual capacity of structures is also presented. The various factors affecting the residual fatigue life at a component level (i.e., plastic hinge) of well-designed reinforced concrete frames are discussed, and equations to quantify each of them are proposed, as well as a methodology to incorporate them into a full displacement-based procedure for pre-earthquake and post-earthquake seismic assessment.

Research papers, Lincoln University

The Canterbury region of New Zealand was shaken by major earthquakes on the 4th September 2010 and 22nd February 2011. The quakes caused 185 fatalities and extensive land, infrastructure and building damage, particularly in the Eastern suburbs of Christchurch city. Almost 450 ha of residential and public land was designated as a ‘Red Zone’ unsuitable for residential redevelopment because land damage was so significant, engineering solutions were uncertain, and repairs would be protracted. Subsequent demolition of all housing and infrastructure in the area has left a blank canvas of land stretching along the Avon River corridor from the CBD to the sea. Initially the Government’s official – but enormously controversial – position was that this land would be cleared and lie fallow until engineering solutions could be found that enabled residential redevelopment. This paper presents an application of a choice experiment (CE) that identified and assessed Christchurch residents’ preferences for different land use options of this Red Zone. Results demonstrated strong public support for the development of a recreational reserve comprising a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision. By highlighting the value of a range of alternatives, the CE provided a platform for public participation and expanded the conversational terrain upon which redevelopment policy took place. We conclude the method has value for land use decision-making beyond the disaster recovery context.

Research papers, University of Canterbury Library

In most design codes, infill walls are considered as non-structural elements and thus are typically neglected in the design process. The observations made after major earthquakes (Duzce 1999, L’Aquila 2009, Christchurch 2011) have shown that even though infill walls are considered to be non-structural elements, they interact with the structural system during seismic actions. In the case of heavy infill walls (i.e. clay brick infill walls), the whole behaviour of the structure may be affected by this interaction (i.e. local or global structural failures such as soft storey mechanism). In the case of light infill walls (i.e. non-structural drywalls), this may cause significant economical losses. To consider the interaction of the structural system with the ‘non-structural ’infill walls at design stage may not be a practical approach due to the complexity of the infill wall behaviour. Therefore, the purpose of the reported research is to develop innovative technological solutions and design recommendations for low damage non-structural wall systems for seismic actions by making use of alternative approaches. Light (steel/timber framed drywalls) and heavy (unreinforced clay brick) non-structural infill wall systems were studied by following an experimental/numerical research programme. Quasi-static reverse cyclic tests were carried out by utilizing a specially designed full scale reinforced concrete frame, which can be used as a re-usable bare frame. In this frame, two RC beams and two RC columns were connected by two un-bonded post tensioning bars, emulating a jointed ductile frame system (PRESSS technology). Due to the rocking behaviour at the beam-column joint interfaces, this frame was typically a low damage structural solution, with the post-tensioning guaranteeing a linear elastic behaviour. Therefore, this frame could be repeatedly used in all of the tests carried out by changing only the infill walls within this frame. Due to the linear elastic behaviour of this structural bare frame, it was possible to extract the exact behaviour of the infill walls from the global results. In other words, the only parameter that affected the global results was given by the infill walls. For the test specimens, the existing practice of construction (as built) for both light and heavy non-structural walls was implemented. In the light of the observations taken during these tests, modified low damage construction practices were proposed and tested. In total, seven tests were carried out: 1) Bare frame , in order to confirm its linear elastic behaviour. 2) As built steel framed drywall specimen FIF1-STFD (Light) 3) As built timber framed drywall specimen FIF2-TBFD (Light) 4) As built unreinforced clay brick infill wall specimen FIF3-UCBI (Heavy) 5) Low damage steel framed drywall specimen MIF1-STFD (Light) 6) Low damage timber framed drywall specimen MIF2-TBFD (Light) 7) Low damage unreinforced clay brick infill wall specimen MIF5-UCBI (Heavy) The tests of the as built practices showed that both drywalls and unreinforced clay brick infill walls have a low serviceability inter-storey drift limit (0.2-0.3%). Based on the observations, simple modifications and details were proposed for the low damage specimens. The details proved to be working effectively in lowering the damage and increasing the serviceability drift limits. For drywalls, the proposed low damage solutions do not introduce additional cost, material or labour and they are easily applicable in real buildings. For unreinforced clay brick infill walls, a light steel sub-frame system was suggested that divides the infill panel zone into smaller individual panels, which requires additional labour and some cost. However, both systems can be engineered for seismic actions and their behaviour can be controlled by implementing the proposed details. The performance of the developed details were also confirmed by the numerical case study analyses carried out using Ruaumoko 2D on a reinforced concrete building model designed according to the NZ codes/standards. The results have confirmed that the implementation of the proposed low damage solutions is expected to significantly reduce the non-structural infill wall damage throughout a building.

Research papers, University of Canterbury Library

Natural hazard disasters often have large area-wide impacts, which can cause adverse stress-related mental health outcomes in exposed populations. As a result, increased treatment-seeking may be observed, which puts a strain on the limited public health care resources particularly in the aftermath of a disaster. It is therefore important for public health care planners to know whom to target, but also where and when to initiate intervention programs that promote emotional wellbeing and prevent the development of mental disorders after catastrophic events. A large body of literature assesses factors that predict and mitigate disaster-related mental disorders at various time periods, but the spatial component has rarely been investigated in disaster mental health research. This thesis uses spatial and spatio-temporal analysis techniques to examine when and where higher and lower than expected mood and anxiety symptom treatments occurred in the severely affected Christchurch urban area (New Zealand) after the 2010/11 Canterbury earthquakes. High-risk groups are identified and a possible relationship between exposure to the earthquakes and their physical impacts and mood and anxiety symptom treatments is assessed. The main research aim is to test the hypothesis that more severely affected Christchurch residents were more likely to show mood and anxiety symptoms when seeking treatment than less affected ones, in essence, testing for a dose-response relationship. The data consisted of mood and anxiety symptom treatment information from the New Zealand Ministry of Health’s administrative databases and demographic information from the National Health Index (NHI) register, when combined built a unique and rich source for identifying publically funded stress-related treatments for mood and anxiety symptoms in almost the whole population of the study area. The Christchurch urban area within the Christchurch City Council (CCC) boundary was the area of interest in which spatial variations in these treatments were assessed. Spatial and spatio-temporal analyses were done by applying retrospective space-time and spatial variation in temporal trends analysis using SaTScan™ software, and Bayesian hierarchical modelling techniques for disease mapping using WinBUGS software. The thesis identified an overall earthquake-exposure effect on mood and anxiety symptom treatments among Christchurch residents in the context of the earthquakes as they experienced stronger increases in the risk of being treated especially shortly after the catastrophic 2011 Christchurch earthquake compared to the rest of New Zealand. High-risk groups included females, elderly, children and those with a pre-existing mental illness with elderly and children especially at-risk in the context of the earthquakes. Looking at the spatio-temporal distribution of mood and anxiety symptom treatments in the Christchurch urban area, a high rates cluster ranging from the severely affected central city to the southeast was found post-disaster. Analysing residential exposure to various earthquake impacts found that living in closer proximity to more affected areas was identified as a risk factor for mood and anxiety symptom treatments, which largely confirms a dose-response relationship between level of affectedness and mood and anxiety symptom treatments. However, little changes in the spatial distribution of mood and anxiety symptom treatments occurred in the Christchurch urban area over time indicating that these results may have been biased by pre-existing spatial disparities. Additionally, the post-disaster mobility activity from severely affected eastern to the generally less affected western and northern parts of the city seemed to have played an important role as the strongest increases in treatment rates occurred in less affected northern areas of the city, whereas the severely affected eastern areas tended to show the lowest increases. An investigation into the different effects of mobility confirmed that within-city movers and temporary relocatees were generally more likely to receive care or treatment for mood or anxiety symptoms, but moving within the city was identified as a protective factor over time. In contrast, moving out of the city from minor, moderately or severely damaged plain areas of the city, which are generally less affluent than Port Hills areas, was identified as a risk factor in the second year post-disaster. Moreover, residents from less damaged plain areas of the city showed a decrease in the likelihood of receiving care or treatment for mood or anxiety symptoms compared to those from undamaged plain areas over time, which also contradicts a possible dose-response relationship. Finally, the effects of the social and physical environment, as well as community resilience on mood and anxiety symptom treatments among long-term stayers from Christchurch communities indicate an exacerbation of pre-existing mood and anxiety symptom treatment disparities in the city, whereas exposure to ‘felt’ earthquake intensities did not show a statistically significant effect. The findings of this thesis highlight the complex relationship between different levels of exposure to a severe natural disaster and adverse mental health outcomes in a severely affected region. It is one of the few studies that have access to area-wide health and impact information, are able to do a pre-disaster / post-disaster comparison and track their sample population to apply spatial and spatio-temporal analysis techniques for exposure assessment. Thus, this thesis enhances knowledge about the spatio-temporal distribution of adverse mental health outcomes in the context of a severe natural disaster and informs public health care planners, not only about high-risk groups, but also where and when to target health interventions. The results indicate that such programs should broadly target residents living in more affected areas as they are likely to face daily hardship by living in a disrupted environment and may have already been the most vulnerable ones before the disaster. Special attention should be focussed on women, elderly, children and people with pre-existing mental illnesses as they are most likely to receive care or treatment for stress-related mental health symptoms. Moreover, permanent relocatees from affected areas and temporarily relocatees shortly after the disaster may need special attention as they face additional stressors due to the relocation that may lead to the development of adverse mental health outcomes needing treatment.

Research papers, University of Canterbury Library

Documenting earthquake-induced ground deformation is significant to assess the characteristics of past and contemporary earthquakes and provide insight into seismic hazard. This study uses airborne light detection and ranging (LiDAR) and conducts multi-disciplinary field techniques to document the surface rupture morphology and evaluate the paleoseismicity and seismic hazard parameters of the Hurunui segment of the Hope Fault in the northern South Island of New Zealand. It also documents and evaluates seismically induced features and ground motion characteristics of the 2010 Darfield and 2011 Christchurch earthquakes in the Port Hills, south of Christchurch. These two studies are linked in that they investigate the near-field coseismic features of large (Mw ~7.1) earthquakes in New Zealand and produce data for evaluating seismic hazards of future earthquakes. In the northern South Island of New Zealand, the Australian-Pacific plate boundary is characterised by strike-slip deformation across the Marlborough Fault System (MFS). The ENE-striking Hope Fault (length: ~230 km) is the youngest and southernmost fault in the MFS, and the second fastest slipping fault in New Zealand. The Hope Fault is a major source of seismic hazard in New Zealand and has ruptured (in-part) historically in the Mw 7.1 1888 Amuri earthquake. In the west, the Hurunui segment of the Hope Fault is covered by beech forest. Hence, its seismic hazard parameters and paleoearthquake chronology were poorly constrained and it was unknown whether the 1888 earthquake ruptured this segment or not and if so, to what extent. Utilising LiDAR and field data, a 29 km-long section of the Hurunui segment of the Hope Fault is mapped. LiDAR-mapping clearly reveals the principal slip zone (PSZ) of the fault and a suite of previously unrecognised structures that form the fault deformation zone (FDZ). FDZ width measurements from 415 locations reveal a spatially-variable, active FDZ up to ~500 m wide with an average width of 200 m. Kinematic analysis of the fault structures shows that the Hurunui segment strikes between 070° and 075° and is optimally oriented for dextral strike-slip within the regional stress field. This implies that the wide FDZ observed is unlikely to result from large-scale fault mis-orientation with respect to regional stresses. The analysis of FDZ width indicates that it increases with increased hanging wall topography and increased topographic relief suggesting that along-strike topographic perturbations to fault geometry and stress states increase fault zone complexity and width. FDZ width also increases where the tips of adjacent PSZ strands locally vary in strike, and where the thickness of alluvial deposits overlying bedrock increases. LiDAR- and photogrammetrically-derived topographic mapping indicates that the boundary between the Hurunui and Hope River segments is characterised by a ~850-m-wide right stepover and a 9º-14° fault bend. Paleoseismic trenching at Hope Shelter site reveals that 6 earthquakes occurred at A.D. 1888, 1740-1840, 1479-1623, 819-1092, 439-551, and 373- 419. These rupture events have a mean recurrence interval of ~298 ± 88 yr and inter-event times ranging from 98 to 595 yrs. The variation in the inter-event times is explained by (1) coalescing rupture overlap from the adjacent Hope River segment on to the Hurunui segment at the study site, (2) temporal clustering of large earthquakes on the Hurunui segment, and/or (3) ‘missing’ rupture events. It appears that the first two options are more plausible to explain the earthquake chronologies and rupture behaviour on the Hurunui segment, given the detailed nature of the geologic and chronologic investigations. This study provides first evidence for coseismic multi-segment ruptures on the Hope Fault by identifying a rupture length of 44-70 km for the 1888 earthquake, which was not confined to the Hope River segment (primary source for the 1888 earthquake). LiDAR data is also used to identify and measure dextral displacements and scarp heights from the PSZ and structures within the FDZ along the Hurunui segment. Reconstruction of large dextrally-offset geomorphic features shows that the vertical component of slip accounts for only ~1% of the horizontal displacements and confirms that the fault is predominantly strike-slip. A strong correlation exists between the dextral displacements and elevations of geomorphic features suggesting the possibility of age correlation between the geomorphic features. A mean single event displacement (SED) of 3.6 ± 0.7 m is determined from interpretation of sets of dextral displacements of ≤ 25 m. Using the available surface age data and the cumulative dextral displacements from Matagouri Flat, McKenzie Fan, Macs Knob and Hope River sites, and the mean SED, a mean slip rate of 12.2 ± 2.4 mm/yr, and a mean recurrence interval of ~320 ± 120 yr, and a potential earthquake magnitude of Mw 7.2 are determined for the Hurunui segment. This study suggests that the fault slip rate has been constant over the last ~15000 yr. Strong ground motions from the 2010 Darfield (Canterbury) earthquake displaced boulders and caused ground damage on some ridge crests in the Port Hills. However, the 2011 Christchurch earthquake neither displaced boulders nor caused ground damage at the same ridge crests. Documentation of locations (~400 m a.s.l.), lateral displacements (8-970 cm), displacement direction (250° ± 20°) of displaced boulders, in addition to their hosting socket geometries (< 1 cm to 50 cm depth), the orientation of the ridges (000°-015°) indicate that boulders have been displaced in the direction of instrumentally recorded transient peak ground horizontal displacements nearby and that the seismic waves have been amplified at the study sites. The co-existence of displaced and non-displaced boulders at proximal sites suggests small-scale ground motion variability and/or varying boulder-ground dynamic interactions relating to shallow phenomena such as variability in soil depth, bedrock fracture density and/or microtopography on the bedrock-soil interface. Shorter shaking duration of the 2011 Christchurch event, differing frequency contents and different source characteristics were all factors that may have contributed to generating circumstances less favourable to boulder displacement in this earthquake. Investigating seismically induced features, fault behaviour, site effects on the rupture behaviour, and site response to the seismic waves provides insights into fault rupture hazards.

Audio, Radio New Zealand

A Christchurch couple locked in an ongoing legal battle with state-owned quake insurer Southern Response says it is sobering for a Court of Appeal decision to go their way, one decade on from the harrowing earthquakes. An earlier High Court decision found Southern Response guilty of misleading and deceptive behaviour when it short-changed Karl and Alison Dodds tens of thousands of dollars after their quake damaged house was written off. The Dodds say they were tricked into accepting a lower offer from Southern Response only to later discover the insurer had kept secret from them a second higher estimate to rebuild their damaged house, a so-called second secret detailed repair and rebuild analysis (DRA). The High Court ordered Southern Response to pay the Dodds almost $180,000 in damages, plus costs. But the government appealed the decision, saying it needed clarity, because of the thousands of similar cases it could be liable for. The Court of Appeal reduced the damages Southern Response has to pay $10,656.44 due to an earlier error in calculations. The Minister responsible Grant Robertson has declined to be interviewed. Southern Response also declined to be interviewed. Neither have ruled out appealing the decision in the Supreme Court.

Research papers, University of Canterbury Library

© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Prediction of building collapse due to significant seismic motion is a principle objective of earthquake engineers, particularly after a major seismic event when the structure is damaged and decisions may need to be made rapidly concerning the safe occupation of a building or surrounding areas. Traditional model-based pushover analyses are effective, but only if the structural properties are well understood, which is not the case after an event when that information is most useful. This paper combines hysteresis loop analysis (HLA) structural health monitoring (SHM) and incremental dynamic analysis (IDA) methods to identify and then analyse collapse capacity and the probability of collapse for a specific structure, at any time, a range of earthquake excitations to ensure robustness. This nonlinear dynamic analysis enables constant updating of building performance predictions following a given and subsequent earthquake events, which can result in difficult to identify deterioration of structural components and their resulting capacity, all of which is far more difficult using static pushover analysis. The combined methods and analysis provide near real-time updating of the collapse fragility curves as events progress, thus quantifying the change of collapse probability or seismic induced losses very soon after an earthquake for decision-making. Thus, this combination of methods enables a novel, higher-resolution analysis of risk that was not previously available. The methods are not computationally expensive and there is no requirement for a validated numerical model, thus providing a relatively simpler means of assessing collapse probability immediately post-event when such speed can provide better information for critical decision-making. Finally, the results also show a clear need to extend the area of SHM toward creating improved predictive models for analysis of subsequent events, where the Christchurch series of 2010–2011 had significant post-event aftershocks.

Research papers, The University of Auckland Library

The susceptibility of precast hollow-core floors to sustain critical damage during an earthquake is now well-recognized throughout the structural engineering community in New Zealand. The lack of shear reinforcement in these floor units is one of the primary reasons causing issues with the seismic performance of these floors. Recent research has revealed that the unreinforced webs of these floor units can crack at drift demands as low as 0.6%. Such observation indicates that potentially many of the existing building stock incorporating hollow-core flooring systems in cities of relatively high seismic activity (e.g. Wellington and Christchurch) that probably have already experienced a level of shaking higher than 0.6% drift in previous earthquakes might already have their floor units cracked. However, there is little information available to reliably quantify the residual gravity load-carrying capacity of cracked hollow-core floor units, highlighting the need to understand the post-cracking behavior of hollow-core floor units to better quantify the extent of the risk that cracked hollow-core floor units pose.

Research papers, University of Canterbury Library

During the 2010 - 2011 Canterbury earthquake sequence, extensive liquefaction was observed in many areas of Christchurch city and its surroundings, causing widespread damage to buildings and infrastructure. While existing simplified methods were found to work well in some areas of the city, there were also large areas where these methods did not perform satisfactorily. In some of these cases, researchers have proposed that layers of fine grained material within the soil profile may be responsible for preventing the manifestation of liquefaction. This paper presents preliminary findings on the mechanisms at play when pressure differentials exist across a clay layer. It is found that if the clay layer is unable to distort, then pore fluid is unable to break-through the layer even with relatively high pressures, resulting in dissipation of excess pore pressures by seepage. If the layers are however able to distort, then it is possible for the pore fluid to break through the clay layer, potentially resulting in adverse effects in terms of the severity of liquefaction.

Research papers, University of Canterbury Library

This thesis addresses the topic of local bond behaviour in RC structures. The mechanism of bond refers to the composite action between deformed steel reinforcing bars and the surrounding concrete. Bond behaviour is an open research topic with a wide scope, particularly because bond it is such a fundamental concept to structural engineers. However, despite many bond-related research findings having wide applications, the primary contribution of this research is an experimental evaluation of the prominent features of local bond behaviour and the associated implications for the seismic performance of RC structures. The findings presented in this thesis attempt to address some structural engineering recommendations made by the Canterbury Earthquakes Royal Commission following the 2010-2011 Canterbury (New Zealand) earthquake sequence. A chapter of this thesis discusses the structural behaviour of flexure-dominated RC wall structures with an insufficient quantity of longitudinal reinforcement, among other in situ conditions, that causes material damage to predominantly occur at a single crack plane. In this particular case, the extent of concrete damage and bond deterioration adjacent to the crack plane will influence the ductility capacity that is effectively provided by the reinforcing steel. As a consequence of these in situ conditions, some lightly reinforced wall buildings in Christchurch lost their structural integrity due to brittle fracture of the longitudinal reinforcement. With these concerning post-earthquake observations in mind, there is the underlying intention that this thesis presents experimental evidence of bond behaviour that allows structural engineers to re-assess their confidence levels for the ability of lightly reinforced concrete structures to achieve the life-safety seismic performance objective the ultimate limit state. Three chapters of this thesis are devoted to the experimental work that was conducted as the main contribution of this research. Critical details of the experimental design, bond testing method and test programme are reported. The bond stress-slip relationship was studied through 75 bond pull-out tests. In order to measure the maximum local bond strength, all bond tests were carried out on deformed reinforcing bars that did not yield as the embedded bond length was relatively short. Bond test results have been presented in two separate chapters in which 48 monotonic bond tests and 27 cyclic bond tests are presented. Permutations of the experiments include the loading rate, cyclic loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and position of the embedded bond region within the specimen (close or far away to the free surface). The parametric study showed that the concrete strength significantly influences the maximum bond strength and that it is reasonable to normalise the bond stress by the square-root of the concrete compressive strength, √(f'c). The generalised monotonic bond behaviour is described within. An important outcome of the research is that the measured bond strength and stiffness was higher than stated by the bond stress-slip relationship in the fib Model Code 2010. To account for these observed differences, an alternative model is proposed for the local monotonic bond stress-slip relationship. Cyclic bond tests showed a significant proportion of the total bond degradation occurs after the loading cycle in the peak bond strength range, which is when bond slip has exceeded 0.5 mm. Subsequent loading to constant slip values showed a linear relationship between the amount of bond strength degradation and the log of the number of cycles that were applied. To a greater extent, the cyclic bond deterioration depends on the bond slip range, regardless of whether the applied load cycling is half- or fully-reversed. The observed bond deterioration and hysteretic energy dissipated during cyclic loading was found to agree reasonably well between these cyclic tests with different loading protocols. The cyclic bond deterioration was also found to be reasonably consistent exponential damage models found in the literature. This research concluded that the deformed reinforcing bars used in NZ construction, embedded in moderate to high strength concrete, are able to develop high local bond stresses that are mobilised by a small amount of local bond slip. Although the relative rib geometry was not varied within this experimental programme, a general conclusion of this thesis is that deformed bars currently available in NZ have a relative rib bearing area that is comparatively higher than the test bars used in previous international research. From the parametric study it was found that the maximum monotonic bond strength is significant enhanced by dynamic loading rates. Experimental evidence of high bond strength and initial bond stiffness generally suggests that only a small amount of local bond slip that can occur when the deformed test bar was subjected to large tension forces. Minimal bond slip and bond damage limits the effective yielding length that is available for the reinforcing steel to distribute inelastic material strains. Consequently, the potential for brittle fracture of the reinforcement may be a more problematic and widespread issue than is apparent to structural engineers. This research has provided information that improve the reliability of engineering predictions (with respect to ductility capacity) of maximum crack widths and the extent of bond deterioration that might occur in RC structures during seismic actions.