Search

found 3864 results

Research papers, University of Canterbury Library

The magnitude Mw 6.2 earthquake of February 22nd 2011 that struck beneath the city of Christchurch, New Zealand, caused widespread damage and was particularly destructive to the Central Business District (CBD). The shaking caused major damage, including collapses of structures, and initiated ground failure in the form of soil liquefaction and consequent effects such as sand boils, surface flooding, large differential settlements of buildings and lateral spreading of ground towards rivers were observed. A research project underway at the University of Canterbury to characterise the engineering behaviour of the soils in the region was influenced by this event to focus on the performance of the highly variable ground conditions in the CBD. This paper outlines the methodology of this research to characterise the key soil horizons that underlie the CBD that influenced the performance of important structures during the recent earthquakes, and will influence the performance of the rebuilt city centre under future events. The methodology follows post-earthquake reconnaissance in the central city, a desk study on ground conditions, site selection, mobilisation of a post-earthquake ground investigation incorporating the cone penetration test (CPT), borehole drilling, shear wave velocity profiling and Gel-push sampling followed by a programme of laboratory testing including monotonic and cyclic testing of the soils obtained in the investigation. The research is timely and aims to inform the impending rebuild, with appropriate information on the soils response to dynamic loading, and the influence this has on the performance of structures with various foundation forms.

Research papers, University of Canterbury Library

The Canterbury earthquakes have generated economic demand and supply volatility, highlighting geographical and structural interdependencies. Post-earthquake reconstruction and new developments have seen skills training, relocation, recruitment and importation of skills becoming crucial for construction companies to meet demand and compete effectively. This report presents 15 case studies from a range of organisations involved in the Canterbury rebuild, exploring the business dynamics and outcomes of their resourcing initiatives. A key finding of this research is that, for many construction organisations, resourcing initiatives have become part of their organisational longer-term development strategies, rather than simply a response to ‘supply and demand’ pressures. Organisations are not relying on any single resourcing solution to drive their growth but use a combination of initiatives to create lasting business benefits, such as cost savings, improved brand and reputation, a stable and productive workforce, enhanced efficiency and staff morale, as well as improved skill levels.

Research Papers, Lincoln University

Liquefaction affects late Holocene, loose packed and water saturated sediment subjected to cyclical shear stress. Liquefaction features in the geological record are important off-fault markers that inform about the occurrence of moderate to large earthquakes (> 5 Mw). The study of contemporary liquefaction features provides a better understanding of where to find past (paleo) liquefaction features, which, if identified and dated, can provide information on the occurrence, magnitude and timing of past earthquakes. This is particularly important in areas with blind active faults. The extensive liquefaction caused by the 2010-2011 Canterbury Earthquake Sequence (CES) gave the geoscience community the opportunity to study the liquefaction process in different settings (alluvial, coastal and estuarine), investigating different aspects (e.g. geospatial correlation with landforms, thresholds for peak ground acceleration, resilience of infrastructures), and to collect a wealth geospatial dataset in the broad region of the Canterbury Plains. The research presented in this dissertation examines the sedimentary architecture of two environments, the alluvial and coastal settings, affected by liquefaction during the CES. The novel aim of this study is to investigate how landform and subsurface sedimentary architecture influence liquefaction and its surface manifestation, to provide knowledge for locating studies of paleoliquefaction in future. Two study cases documented in the alluvial setting showed that liquefaction features affected a crevasse splay and point bar ridges. However, the liquefaction source layer was linked to paleochannel floor deposits below the crevasse splay in the first case, and to the point bar deposits themselves in the second case. This research documents liquefaction features in the coastal dune system of the Canterbury Plains in detail for the first time. In the coastal dune setting the liquefiable layer is near the surface. The pore water pressure is vented easily because the coastal dune soil profile is entirely composed of non-cohesive, very well sorted sandy sediment that weakly resists disturbance from fluidised sediment under pressure. As a consequence, the liquefied flow does not need to find a specific crack through which the sediment is vented at the surface; instead, the liquefied sand finds many closely spaced conduits to vent its excess of pore water pressure. Therefore, in the coastal dune setting it is rare to observe discrete dikes (as they are defined in the alluvial setting), instead A horizon delamination (splitting) and blistering (near surface sills) are more common. The differences in styles of surface venting lead to contrasts in patterns of ejecta in the two environments. Whereas the alluvial environment is characterised by coalesced sand blows forming lineations, the coastal dune environment hosts apparently randomly distributed isolated sand blows often associated with collapse features. Amongst the techniques tested for the first time to investigate liquefaction features are: 3D GPR, which improved the accuracy of the trenching even six years after the liquefaction events; thin section analysis to investigate sediment fabric, which helped to discriminate liquefied sediment from its host sediment, and modern from paleoliquefaction features; a Random Forest classification based on the CES liquefaction map, which was used to test relationships between surface manifestation of liquefaction and topographic parameters. The results from this research will be used to target new study sites for future paleoliquefaction research and thus will improve the earthquake hazard assessment across New Zealand.

Images, Alexander Turnbull Library

Shows a carcass that represents the Christchurch Cathedral with many people rushing to try to save it from demolition. Context: the extremely controversial debate about whether the Christchurch Cathedral which was severely damaged in the earthquakes, should be demolished, rebuilt on the same site in the same style or partially demolished and made into a memorial. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The Canterbury earthquakes and the rebuild are generation-defining events for twenty-first century Aotearoa/ New Zealand. This article uses an actor network approach to explore 32 women’s narratives of being shaken into dangerous disaster situations and reconstituting themselves to cope in socially innovative ways. The women’s stories articulate on-going collective narratives of experiencing disaster and coping with loss in ‘resilient’ ways. In these women’s experiences, coping in disasters is not achieved by talking through the emotional trauma. Instead, coping comes from seeking solace through engagement with one’s own and others’ personal risk and resourcefulness in ways that feed into the emergence of socially innovative voluntary organisations. These stories offer conceptual insight into the multivalent interconnections between resilience and vulnerabilities and the contested nature of post-disaster recovery in Aotearoa/New Zealand. These women gave voice to living through disasters resiliently in ways that forged new networks of support across collective and personal narratives and broader social goals and aspirations for Aotearoa/New Zealand’s future.

Images, Alexander Turnbull Library

The cartoon shows Prime Minister John Key as a surgeon in a blood-spattered white coat; he has just created a Frankenstein monster which has resulted in the Minister for Earthquake Recovery Gerry Brownlee and Mayor of Christchurch Bob Parker joined together in a single body named 'CERA". Gerry Brownlee clutches a huge spiked mallet and Bob Parker a paintbrush. Context - a new bill is being rushed through parliament to establish the Canterbury Earthquake Recovery Authority (Cera); it empowers it to lead reconstruction efforts in Christchurch. It gives Cera specific powers to get information from any source, to requisition and build on land and to carry out demolitions. It can also take over local authorities if they are not working effectively on recovery work. The monster suggests distinctly differing philosophies on how the work of rebuilding Christchurch should proceed. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The devastating magnitude M6.3 earthquake, that struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011, caused widespread damage to the lifeline systems. Following the event, the Natural Hazard Research Platform (NHRP) of New Zealand funded a short-term project “Recovery of Lifelines” aiming to: 1) coordinate the provision of information to meet lifeline short-term needs; and to 2) facilitate the accessibility to lifelines of best practice engineering details, along with hazards and vulnerability information already available from the local and international scientific community. This paper aims to briefly summarise the management of the recovery process for the most affected lifelines systems, including the electric system, the road, gas, and the water and wastewater networks. Further than this, the paper intends to discuss successes and issues encountered by the “Recovery of Lifelines” NHRP project in supporting lifelines utilities.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

This study analyses the success and limitations of the recovery process following the 2010–11 earthquake sequence in Christchurch, New Zealand. Data were obtained from in-depth interviews with 32 relocated households in Christchurch, and from a review of recovery policies implemented by the government. A top-down approach to disaster recovery was evident, with the creation of multiple government agencies and processes that made grassroots input into decision-making difficult. Although insurance proceeds enabled the repair and rebuilding of many dwellings, the complexity and adversarial nature of the claim procedures also impaired recovery. Householders’ perceptions of recovery reflected key aspects of their post-earthquake experiences (e.g. the housing offer they received, and the negotiations involved), and the outcomes of their relocation (including the value of the new home, their subjective well-being, and lifestyle after relocation). Protracted insurance negotiations, unfair offers and hardships in post-earthquake life were major challenges to recovery. Less-thanfavourable recovery experiences also transformed patterns of trust in local communities, as relocated householders came to doubt both the government and private insurance companies’ ability to successfully manage a disaster. At the same time, many relocated households expressed trust in their neighbours and communities. This study illuminates how government policies influence disaster recovery while also suggesting a need to reconsider centralised, top-down approaches to managing recovery.

Research Papers, Lincoln University

Throughout 2010 and 2011, the city of Christchurch, New Zealand, suffered a series of devastating earthquakes that caused serious damage to the city. This study examines the effect these earthquakes have had on the sport of swimming in Christchurch. It specifically focuses on three different aspects of the swimming industry: indoor competitive swimming, open water swimming and learning to swim. It reports on the industry prior to the earthquakes before examining the developments subsequent to the shakes. The effects on both facilities and participation numbers were examined. Results showed that many indoor swimming facilities were lost which had significant flow-on effects. In addition, many beaches were out of bounds and almost half of the schools in Canterbury lost the use of their own swimming pools. In terms of participation numbers, results showed that while there was a decrease in the number of indoor competitive swimmers, Canterbury clubs were still highly competitive and their rankings at events either remained similar or bettered during and after the period of the earthquakes. On the other hand, an increase in the number of participants was seen in swimming lessons as temporary pools were constructed and subsidies were offered to cover transport and lesson costs. Open water swimming, however, seems to have been relatively unaffected by the earthquakes.This report was made possible through Lincoln University’s Summer Scholarship programme. The authors would also like to acknowledge those anonymous interviewees who provided some valuable insight into the swimming industry in Christchurch.

Research papers, University of Canterbury Library

he strong motion station at Heathcote Valley School (HVSC) recorded unusually high peak ground accelerations (2.21g vertical and 1.41g horizontal) during the February 2011 Christchurch earthquake. Ground motions recorded at HVSC in numerous other events also exhibited consistently higher intensities compared with nearby strong motion stations. We investigated the underlying causes of such high intensity ground motions at HVSC by means of 2D dynamic finite element analyses, using recorded ground motions during the 2010-2011 Canterbury earthquake sequence. The model takes advantage of a LiDAR-based digital elevation model (DEM) to account for the surface topography, while the geometry and dynamic properties of the surficial soils are characterized by seismic cone penetration tests (sCPT) and Multi-Channel Analyses of Surface Waves (MASW). Comparisons of simulated and recorded ground motions suggests that our model performs well for distant events, while for near-field events, ground motions recorded at the adopted reference station at Lyttelton Port are not reasonable input motions for the simulation. The simulations suggest that Rayleigh waves generated at the inclined interface of the surficial colluvium and underlying volcanic rock strongly affect the ground motions recorded at HVSC, in particular, being the dominant contributor to the recorded vertical motions.