Search

found 6359 results

Images, Alexander Turnbull Library

Relates to the three new categories for residential foundation design that have been developed and will be required for repairing and rebuilding homes in Canterbury following the earthquakes of 2010 and 2011. The 'zones' referred to in the cartoon are the colours designated to different degrees of damage to particular areas or buildings in Christchurch after the earthquakes. Quantity: 1 digital cartoon(s).

Images, Canterbury Museum

One black metal spade with plastic handle; white band towards handle. Spade is well used and features remnants of liquefaction. Used by Student Volunteer Army in the clean up after 4 September 2010 earthquake. It is estimated that 1,750 spades similar to this one were used in the cleanup of Christchurch after both the 4 September 2010 and 22 Fe...

Images, Canterbury Museum

One 750ml green wine bottle with red coloured metal screw cap containing Mud House 2010 Marlborough Sauvignon Blanc ‘The Day the Ground Moved Like Jelly’; the front label has a drawing of an earthquake damaged house on a white background by Bella Kingi, while the label on the reverse details the fundraising effort supported by the sale of the bo...

Images, Canterbury Museum

One white cotton t-shirt with black seismograph-like patterns in the shape of ChristChurch Cathedral. Produced to commemorate the 7.1 magnitude earthquake that struck Canterbury at 4.35am on 4 September 2010. This t-shirt was designed and manufactured by Auckland based t-shirt company Mr Vintage in October 2010 to commemorate the 7.1 magnitude ...

Images, Alexander Turnbull Library

Under the caption, young people carrying their baggage flutter into the air, away from Canterbury and toward 'Oz'. In September GNS Earth Sciences reported that after the earthquakes, the Greendale and associated faults were still moving as they settled into a new configuration. At the same time the young were leaving Canterbury (and New Zealand) for a better future in Australia. The population of New Zealand was moving into a new configuration. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Ruamoko, the Earthquake God, stirs in his bed, and with a sudden yawn, wonders if it is time to awake again. Above him Christchurch City trembles. On 15 May 2012, after several months of comparatively small quakes, a 4.5 Richter Scale earthquake was registered only 10 km East of Christchurch. Quake-weary Christchurch citizens feared that another large earthquake was on its way. Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

This article argues that teachers deserve more recognition for their roles as first responders in the immediate aftermath of a disaster and for the significant role they play in supporting students and their families through post-disaster recovery. The data are drawn from a larger study, 'Christchurch Schools Tell Their Earthquake Stories' funded by the United Nations Educational, Scientific and Cultural Organisation and the University of Auckland, in which schools were invited to record their earthquake stories for themselves and for historical archives. Data were gathered from five primary schools between 2012 and 2014. Methods concerned mainly semi-structured individual or group interviews and which were analysed thematically. The approach was sensitive, flexible and participatory with each school being able to choose its focus, participants and outcome. Participants from each school generally included the principal and a selection of teachers, students and parents. In this study, the data relating to the roles of teachers were separated out for closer analysis. The findings are presented as four themes: immediate response; returning to (new) normal; care and support; and long term effects.

Audio, Radio New Zealand

Canterbury got a big shock this morning with a long and strong earthquake that sent people running for the nearest door frame. While the region seems to have escaped any major damage, it's left locals thankful it wasn't worse. The quake measured 6.0 on the richter scale and was centred 45 kilometes north of Geraldine. Since then, there have been more than 40 aftershocks. Checkpoint producer Anastasia Hedge has been near the epicentre.

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.

Research papers, University of Canterbury Library

The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.

Research papers, University of Canterbury Library

Following a disaster, an organisation’s ability to recover is influenced by its internal capacities, but also by the people, organisations, and places to which it is connected. Current approaches to organisational resilience tend to focus predominantly on an organization's internal capacities and do not adequately consider the place-based contexts and networks in which it is embedded. This thesis explores how organisations’ connections may both hinder and enable organisational resilience. Organisations in the Canterbury region of New Zealand experienced significant and repeated disruptions as a result of two major earthquakes and thousands of aftershocks throughout 2010 and 2011. This thesis draws upon 32 case studies of organisations located in three severely damaged town centres in Canterbury to assess the influence that organisations’ place-based connections and relational networks had on their post-earthquake trajectories. The research has four objectives: 1) to examine the ways organisations connected to their local contexts both before and after the earthquakes, 2) to explore the characteristics of the formal and informal networks organisations used to aid their response and recovery, 3) to identify the ways organisations’ connections to their local contexts and support networks influenced their ability to recover following the earthquakes, and finally, 4) to develop approaches to assess resilience that consider these extra-organisational connections. The thesis contests the fiction that organisations recover and adapt independently from their contexts following disasters. Although organisations have a set of internal capacities that enable their post-disaster recovery, they are embedded within external structures that constrain and enable their adaptive options following a disaster. An approach which considers organisations’ contexts and networks as potential sources of organisational resilience has both conceptual and practical value. Refining our understanding of the influence of extra-organisational connections can improve our ability to explain variability in organisational outcomes following disasters and foster new ways to develop and manage organisational resilience.

Research papers, University of Canterbury Library

The Canterbury earthquakes of 2010 and 2011 have shone the spotlight on a number of tax issues. These issues, and in particular lessons learned from them, will be relevant for revenue authorities, policymakers and taxpayers alike in the broader context of natural disasters. Issues considered by this paper include the tax treatment of insurance monies. For example, building owners will receive pay-outs for destroyed assets and buildings which have been depreciated. Where the insurance payment is more than the adjusted tax value, there will be a taxable "gain on sale" (or depreciation recovery income). If the building owner uses those insurance proceeds to purchase a replacement asset, legislative amendments specifically enacted following the earthquakes provide that rollover relief of the depreciation recovery income is available. The tax treatment of expenditure to seismically strengthen a building is another significant issue faced by building owners. Case law has determined that this expenditure will usually be capital expenditure. In the past such costs could be capitalised to the building and depreciated accordingly. However, since the 2011-2012 income year owners have been prohibited from claiming depreciation on buildings and therefore currently no deduction is available for such strengthening expenditure (whether immediate or deferred). This has significant potential implications for landlords throughout New Zealand facing significant seismic retrofit costs. Incentives, or some form of financial support, whether delivered through the tax system or some other mechanism may be required. International Financial Reporting Standards (IFRS) require insurance proceeds, including reimbursement for expenditure of a capital nature, be reported as income while expenditure itself is not recorded as a current period expense. This has the effect of overstating current income and creating a larger variation between reported income for accounting and taxation purposes. Businesses have obligations to maintain certain business records for tax purposes. Reconstructing records destroyed by a natural disaster depends on how the information was originally stored. The earthquakes have demonstrated the benefits of ‘off-site’ (outside Canterbury) storage, in particular electronic storage. This paper considers these issues and the Inland Revenue Department (Inland Revenue) Standard Practice Statement which deals with inter alia retention of business records in electronic format and offshore record storage. Employer provided accommodation is treated as income to the benefitting employee. A recent amendment to the Income Tax Act 2007 retrospectively provides that certain employer provided accommodation is exempt from tax. The time aspect of these rules is extended where the employee is involved in the Canterbury rebuild and comes from outside the region.