Search

found 358 results

Audio, Radio New Zealand

A momentous day in Christchurch as a huge steel frame was installed as part of the stabilisation work for Christ Church Cathedral. Karyn speaks with project director Keith Paterson about the plans to return the famed rose window extensively damage in the 2011 earthquake.

Images, UC QuakeStudies

The Octagon Live Restaurant (formerly Trinity Church) on Worcester Street. Steel bracing has been placed on the tower to limit further damage from aftershocks. Sculptures of a cyclist, bungee jumper, rock climber and kayaker can be seen on the bracing posts.

Research papers, University of Canterbury Library

Recently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.

Images, UC QuakeStudies

A photograph of the entrance to Gap Filler's temporary outdoor cinema on the corner of Madras and St Asaph Streets. The entranceway is made of lights on a steel frame, and leads to a painted "red carpet".

Images, UC QuakeStudies

A photograph of a badly-damaged shop on Colombo Street. The front wall of the top storey of the building has crumbled into the street, exposing the inside of the building. Steel and wooden bracing is keeping the ceiling up.

Images, UC QuakeStudies

A view across London Street in Lyttelton to the Empire Hotel and the Lyttelton Bakery. The buildings have been cordoned off by a safety fence and the facade of the Empire Hotel has been braced with steel beams.

Images, UC QuakeStudies

A digitally manipulated photograph of twisted reinforcing rods amongst the rubble from the demolition of QEII. The photographer comments, "These rarely seen worms live in the pressurised earth under the foundations of buildings. They need a damp soil and be under at least 100 pounds of pressure per square inch. After the destructive force of an earthquake they swiftly rise to the surface through gaps in the rubble. Unfortunately they quickly die and then crystallise as hard as iron in the dry low pressure air".

Images, UC QuakeStudies

The Arts Centre on Worcester Boulevard with damage to the gables. Wire fencing has been placed around the building as a cordon. In the distance, steel bracing has been placed against the front of the building to hold the walls together.

Images, UC QuakeStudies

The Arts Centre on Worcester Boulevard with damage to the gables. Wire fencing has been placed around the building as a cordon. In the distance, steel bracing has been placed against the front of the building to hold the walls together.

Research papers, University of Canterbury Library

Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.

Images, UC QuakeStudies

A damaged concrete tilt-slab building. The slabs have separated and tilted, and are supported by steel bracing. The photographer comments, "This house in Christchurch was made by bolting 4 slabs of concrete together. A fantastic idea in a country prone to earthquakes".

Images, eqnz.chch.2010

Steel frames are being used to shore the unstable facade of the St John the Baptist Church at Latimer Square while the building is being repaired and strengthened following the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, UC QuakeStudies

A red-stickered building on Canterbury Street in Lyttelton. The building's facade has been propped up with timber, steel and concrete block bracing, and one of its windows has been weather proofed with plywood. Wire fencing has been place around the building as a cordon.

Images, UC QuakeStudies

The front of Christ Church Cathedral. The upper wall has crumbled leaving the inside space exposed. Steel bracing has been placed against the front wall to limit further damage. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral.