A photograph of a hand-written cardboard sign reading 'The Beginning Is Nigh'. The sign is cable-tied to the fence next to a vacant site on Gloucester Street. The site is the location of Illusions, part of LUXCITY.
Photograph captioned by Fairfax, "Trudy Mclean, owner of Groovy Glasses Ltd. Story about her business which had to shift after the September 4 M7.1 Christchurch earthquake has been doing really well at their new location".
A photograph of a vacant site on Press Lane next to the Press building. The site is to be the location of Atmosphere, a large-scale installation which is part of LUXCITY.
A photograph of a vacant site on Press Lane next to the Press building. The site is to be the location of Atmosphere, a large-scale installation which is part of LUXCITY.
This paper presents site-specific and spatially-distributed ground-motion intensity estimates which have been utilized in the aftermath of the 2010-2011 Canterbury, New Zealand earthquakes. The methodology underpinning the ground motion intensity estimation makes use of both prediction models for ground motion intensity and its within-event spatial correlation. A key benefit of the methodology is that the estimated ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and standard deviation, with the standard deviation being a function of the distance to nearby observations at strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence, which among other things, have been utilized for assessing liquefaction triggering susceptibility of land in residential areas. Secondly, the conditional distribution of response spectral ordinates is obtained at the location of the Canterbury Television building (CTV), which catastrophically collapsed in the 22 February 2011 earthquake. The conditional response spectra provide insight for the selection of ground motion records for use in forensic seismic response analyses of important structures at locations where direct recordings are absent.
This paper presents a methodology by which both site-specific and spatially distributed ground motion intensity can be obtained immediately following an earthquake event. The methodology makes use of both prediction models for ground motion intensity and its correlation over spatial distances. A key benefit of the methodology is that the ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and also standard deviation, with the standard deviation being a function of the distance to nearby strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence. It is illustrated how these conditional maps can be used for post-event evaluation of liquefaction triggering criteria which have been adopted by the Department of Building and Housing (DBH). Secondly, the conditional distribution of response spectral ordinates is obtained at a specific location for the purposes of determining appropriate ground motion records for use in seismic response analyses of important structures at locations where direct recordings are absent.
A photograph of a vacant site on the corner of Manchester Street and Gloucester Street. This is to be the location of a large-scale sculpture titled Altitude, which is part of LUXCITY.
A photograph of a vacant site on the corner of Gloucester Street and Manchester Street. The site is to be the location of Pavilions & Lighting Devices, an installation which is part of LUXCITY.
A photograph of a vacant site on the corner of Gloucester Street and Manchester Street. The site is to be the location of Pavilions & Lighting Devices, an installation which is part of LUXCITY.
A photograph of a vacant site on the corner of Gloucester Street and Manchester Street. The site is to be the location of Pavilions & Lighting Devices, an installation which is part of LUXCITY.
A PDF copy of two poster advertising Summer of Fun events in Christchurch. The events were held in various neighbourhood locations around Canterbury and were supported by All Right?, SKIP and the Christchurch Earthquake Appeal.
A sign outside the Chinwag Eathai restaurant on Victoria Street reads "To all our valued customers. We are sorry to inform you as of Tuesday 17th January 2012 our building has been red stickered. Don't worry we will be back at a new location!! Yet to be confirmed".
© 2017 The Royal Society of New Zealand. This paper discusses simulated ground motion intensity, and its underlying modelling assumptions, for great earthquakes on the Alpine Fault. The simulations utilise the latest understanding of wave propagation physics, kinematic earthquake rupture descriptions and the three-dimensional nature of the Earth's crust in the South Island of New Zealand. The effect of hypocentre location is explicitly examined, which is found to lead to significant differences in ground motion intensities (quantified in the form of peak ground velocity, PGV) over the northern half and southwest of the South Island. Comparison with previously adopted empirical ground motion models also illustrates that the simulations, which explicitly model rupture directivity and basin-generated surface waves, lead to notably larger PGV amplitudes than the empirical predictions in the northern half of the South Island and Canterbury. The simulations performed in this paper have been adopted, as one possible ground motion prediction, in the ‘Project AF8’ Civil Defence Emergency Management exercise scenario. The similarity of the modelled ground motion features with those observed in recent worldwide earthquakes as well as similar simulations in other regions, and the notably higher simulated amplitudes than those from empirical predictions, may warrant a re-examination of regional impact assessments for major Alpine Fault earthquakes.
A photograph of a vacant site on the corner of Gloucester Street and Colombo Street. The site is to be the location of In Your Face, a large-scale installation which is part of LUXCITY.
A photograph of a vacant site on the corner of Gloucester Street and Colombo Street. The site is to be the location of In Your Face, a large-scale installation which is part of LUXCITY.
A photograph of Hera Hjartardottir and Ben Campbell from Fledge standing on a circular platform at the location of 'Sound Cone'. 'Sound Cone' is a performance space at LUXCITY, and is next to Cathedral Junction.
A PDF copy of the map created for AWA Trails. It shows each of the four trails, the location of each of the twenty five spots to discover and the expected time to walk each track. The maps were available to download from the All Right? website.
A photographic montage of coloured flags in different locations around the city. Each flag has a different slogan beginning with, "It's all right." All Right? posted the image on their Facebook page 14 May 2013 at 1:07pm.
A photograph taken from the corner of Gloucester Street and Colombo Street of people walking to LUXCITY. A large sign detailing the locations of each installation is attached to a wire fence and a temporary 'no left turn' sign has been installed on the corner.
A photograph of All Right? flags in road cones on Deans Avenue. The flags include simple messages beginning with, "It's All Right if..." or "It's All Right to...", which sought to normalise Cantabrians' various emotional responses to the earthquakes. The flags were distributed at various locations around the city, enabling a 'flag hunt' for Cantabrians.
This study updated and superseded Earthquake hazard and risk assessment study Stage 1 Part A: Earthquake source identification and characterisation (Pettinga et al, 1998). It compiled and tabulated all relevant available information on earthquake sources in Canterbury and updated the active faults database with new fault locations and information. See Object Overview for background and usage information.
A photograph of an AWA Trails poster on the gates of Wainoni School. The poster on the right identifies this spot as Location 1 on the Wainoni Trail. The photograph was taken at the launch of the Wainoni AWA trail at Wainoni School. All Right? posted the photograph on their Facebook page on 2 September 2015 at 3:56pm.
A video of an interview with Tanja Grzeta and Alastair Wells, the Co-Directors of Unlimited School, about the news that they will be merging with Discovery One. Grzeta and Wells talk about their excitement about the merge, their pursuit of a location for the school within the Christchurch central city, and their hopes that the school can be open 24/7.
This report presents an overview of the soil profile characteristics at a number of strong motion station (SMS) sites in Christchurch and its surrounds. An extensive database of ground motion records has been captured by the SMS network in the Canterbury region during the Canterbury earthquake sequence. However in order to comprehensively understand the ground motions recorded at these sites and to be able to relate these motions to other locations, a detailed understanding of the shallow geotechnical profile at each SMS is required. The original NZS1170.5 (SNZ 2004) site subsoil classifications for each SMS site is based on regional geological information and well logs located at varying distances from the site. Given the variability of Christchurch soils, more detailed investigations are required in close vicinity to each SMS to better understand stratigraphy and soil properties, which are important in seismic site response. In this regard, CPT, SPT and borehole data, shear wave velocity (Vs) profiles, and horizontal to vertical spectral ratio measurements (H/V) in close vicinity to the SMS were used to develop representative soil profiles at each site. NZS1170.5 (SNZ 2004) site subsoil classifications were updated using Vs and SPT N60 criteria. Site class E boundaries were treated as a sliding scale rather than as a discrete boundary to account for locations with similar site effects potential, an approach which was shown to result in a better delineation between the site classes. SPT N60 values often indicate a stiffer site class than the Vs data for softer soil sites, highlighting the disparity between the two site investigation techniques. Both SPT N60 and Vs based site classes did not always agree with the original site classifications. This emphasises the importance of having detailed site‐specific information at SMS locations in order to properly classify them. Furthermore, additional studies are required to harmonize site classification based on SPT N60 and Vs. Liquefaction triggering assessments were carried out for the Darfield and Christchurch earthquakes, and compared against observed liquefaction surface manifestations and ground motions characteristics at each SMS. In general, the characteristics of the recorded ground motions at each site correlate well with the triggering analyses. However, at sites that likely liquefied at depth (as indicated by triggering analyses and/or inferred from the characteristics of the recorded surface acceleration time series), the presence of a non‐liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects.
This presentation summarizes the development of high-resolution surficial soil velocity models in the Canterbury, New Zealand basin. Shallow (<30m) shear wave velocities were primarily computed based on a combination of a large database of over 15,000 cone penetration test (CPT) logs in and around Christchurch, and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. Large active-source testing at 22 locations and ambient-wavefield surface wave and H/V testing at over 80 locations were utilized in combination with 1700 water well logs to constrain the inter-bedded stratigraphy and velocity of Quaternary sediments up to depths of several hundred meters. Finally, seismic reflection profiles and the ambient-wavefield surface wave data provide constraint on velocities from several hundred meters to several kilometres. At all depths, the high resolution data illustrates the complexity of the soil conditions in the region, and the developed 3D models are presently being used in broadband ground motion simulations to further interpret the observed strong ground motions in the 2010-2011 Canterbury earthquake sequence.
Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.
The Avon River and the Avon-Heathcote Estuary/Ihutai are features of the urban environment of Christchurch City and are popular for recreational and tourist activities. These include punting, rowing, organized yachting, water skiing, shoreline walking, bird watching, recreational fishing and aesthetic appreciation. The Canterbury earthquakes of 2010 and 2011 significantly affected the estuarine and river environments, affecting both the valued urban recreation resources and infrastructure. The aim of the research is to evaluate recreational opportunities using a questionnaire, assess levels of public participation in recreation between winter 2014 and summer 2014-2015 and evaluate the quality of recreational resources. The objective is to determine the main factors influencing recreational uses before and after the February 2011 earthquake and to identify future options for promoting recreational activities. Resource evaluation includes water quality, wildlife values, habitats, riparian strip and the availability of facilities and infrastructure. High levels of recreational participation usually occurred at locations that provided many facilities along with their suitability for family activities, scenic beauty, relaxation, amenities and their proximity to residences. Some locations included more land-based activities, while some included more water-based activities. There were greater opportunities for recreation in summer compared to winter. Activities that were negatively affected by the earthquake such as rowing, kayaking and sailing have resumed. But activities at some places may be limited due to the lack of proper tracks, jetty, public toilets and other facilities and infrastructure. Also, some locations had high levels of bacterial pollution, excessive growth of aquatic plants and a low number of amenity values. These problems need to be solved to facilitate recreational uses. In recovering from the earthquake, the enhancement of recreation in the river and the Estuary will lead to a better quality of life and the improved well-being and psychological health of Christchurch residents. It was concluded that the Avon River and the Avon-Heathcote Estuary/Ihutai continue to provide various opportunities of recreation for users.
Highlights from Radio New Zealand National's programmes for the week ending Friday 7 December. This week ...... not everyone was keen on The Hobbit world premiere party, measuring and assessing innovation, expecting excellence of all students in education no matter what race they are, a world wide gathering of "Dobson's" tour ancestral South Island locations, The Christchurch Fiasco - what is going on with insurance companies post earthquakes, getting touchy feely with art and reggae star Jimmy Cliff on his spiritual life and learnings
If you've used your eftpos card, caught a bus or taxi, taken a photo on your smartphone or mapped a run or walk then you've probably used GPS - the global positioning system developed by the US military. Christchurch city council is using location technology to keep tabs on the city's rubbish bins. With nearly half a million wheelie bins in circulation, it's hoping to track down 16.000 wheelie bins that are missing following the February 2011 earthquake.
A photograph of Donovan Ryan (All Right?) in front of a wall of All Right? posters and holding a handful of All Right? flags. The posters and flags include simple messages beginning with, "It's All Right if..." or "It's All Right to...", which sought to normalise Cantabrians' various emotional responses to the earthquakes. Ryan and others distributed the flags at various locations around the city, enabling a 'flag hunt' for Cantabrians.