A photograph of the earthquake damage to a block of buildings in central Christchurch. The basement of the buildings have collapsed and the concrete blocks have spilled into the car park. Large cracks have also formed in between the blocks in the walls of the building to the left.
Rock mass defect controlled deep-seated landslides are widespread within the deeply incised landscapes formed in Tertiary soft rock terrain in New Zealand. The basal failure surfaces of deep-seated slope failures are defined by thin, comparatively weak and laterally continuous bedding parallel layers termed critical stratigraphic horizons. These horizons have a sedimentary origin and have typically experienced some prior tectonically induced shear displacement at the time of slope failure. The key controls on the occurrence and form of deep-seated landslides are considered in terms of rock mass defect properties and tectonic and climatic forcing. The selection of two representative catchments (in southern Hawke's Bay and North Canterbury) affected by tectonic and climatic forcing has shown that the spatial and temporal initiation of deep-seated bedrock landslides in New Zealand Tertiary soft rock terrain is a predictable rather than a stochastic process; and that deep-seated landslides as a mass wasting process have a controlling role in landscape evolution in many catchments formed in Tertiary soft rock terrain. The Ella Landslide in North Canterbury is a deep-seated (~85 m) translational block slide that has failed on a 5 - 10 mm thick, kaolinite-rich, pre-sheared critical stratigraphic horizon. The residual strength of this sedimentary horizon, (C'R 2.6 - 2.7 kPa, and Ѳ'R = 16 - 21°), compared to the peak strength of the dominant lithology (C' = 176 kPa, and Ѳ' = 37°) defines a high strength contrast in the succession, and therefore a critical location for the basal failure surface of deep-seated slope failures. The (early to mid Holocene) Ella Landslide debris formed a large landslide dam in the Kate Stream catchment and this has significantly retarded rates of mass wasting in the middle catchment. Numerical stability analysis shows that this slope failure would have most likely required the influence of earthquake induced strong ground motion and the event is tentatively correlated to a Holocene event on the Omihi Fault. The influence of this slope failure is likely to affect the geomorphic development of the catchment on a scale of 10⁴ - 10⁵ years. In deeply incised catchments at the southeastern margin of the Maraetotara Plateau, southern Hawke's Bay, numerous widespread deep-seated landslides have basal failure surfaces defined by critical stratigraphic horizons in the form of thin « 20 mm) tuffaceous beds in the Makara Formation flysch (alternating sandstone and mudstone units). The geometry of deep-seated slope failures is controlled by these regularly spaced (~70 m), very weak critical stratigraphic horizons (C'R 3.8 - 14.2 kPa, and Ѳ'R = 2 - 5°), and regularly spaced (~45 m) and steeply dipping (-50°) critical conjugate joint/fault sets, which act as slide block release surfaces. Numerical stability analysis and historical precedent show that the temporal initiation of deep-seated landslides is directly controlled by short term tectonic forcing in the form of periodic large magnitude earthquakes. Published seismic hazard data shows the recurrence interval of earthquakes producing strong ground motions of 0.35g at the study site is every 150 yrs, however, if subduction thrust events are considered the level of strong ground motion may be much higher. Multiple occurrences of deep-seated slope failure are correlated to failure on the same critical stratigraphic horizon, in some cases in three adjacent catchments. Failure on multiple critical stratigraphic horizons leads to the development of a "stepped" landscape morphology. This slope form will be maintained during successive accelerated stream incision events (controlled by long term tectonic and climatic forcing) for as long as catchments are developing in this specific succession. Rock mass defect controlled deep seated landslides are controlling catchment head progression, landscape evolution and hillslope morphology in the Hawke's Bay study area and this has significant implications for the development of numerical landscape evolution models of landscapes formed in similar strata. Whereas the only known numerical model to consider deep seated landslides as an erosion process (ZSCAPE) considers them as stochastic in time and space, this study shows that this could not be applied to a landscape where the widespread spatial occurrence of deep-seated landslides is controlled by rock mass defects. In both of the study areas for this project, and by implication in many catchments in Tertiary soft rock terrain, deep-seated landslides controlled by rock mass defect strength, spacing and orientation, and tectonic and climatic forcing have an underlying control on landscape evolution. This study quantifies parameters for the development of numerical landscape evolution models that would assess the role of specific parameters, such as uplift rates, incision rates and earthquake recurrence in catchment evolution in Tertiary soft rock terrain.
Unrestrained unreinforced clay brick masonry (URM) parapets are found atop a large number of vintage URM buildings. Parapets are typically non-structural cantilevered wall elements that form a fire barrier and in most cases form decorative and ornamental features of vintage URM buildings. Parapets are considered to be one of the most vulnerable elements that are prone to out-of-plane collapse when subjected to earthquake induced shaking. An in-depth analysis of the damage database collected following the 2010/2011 Canterbury earthquakes was performed to obtain information about the distribution, characteristics and observed performance of both the as-built and retrofitted parapets in the Christchurch region. Results, statistical interpretation and implications are presented herein. http://www.aees.org.au/downloads/conference-papers/2015-2/
A photograph of the Observatory tower at the Christchurch Arts Centre. There are cracks in the masonry of the tower near where the two storeys join. The cracks formed as a result of the 4 September 2010 earthquake. Wire fencing has been placed at the entrance to the courtyard in front as a cordon.
A pile of liquefaction silt in Parklands has been decorated with a Santa hat, Christmas decorations and a pair of jandals to form a silt 'snowman'. The photographer comments, "Not the most welcome Santa to find on your doorstep on Xmas Eve. This was made out of damp liquefaction in Parklands".
A photograph of the earthquake damage to the Kenton Chambers Building on Hereford Street. Large cracks have formed in the columns between the building's windows. A section on the bottom storey has collapsed and the bricks have spilled onto the footpath in front. Steel fences have been placed across the street as a cordon.
A photograph of earthquake damage to the Kenton Chambers Building on Hereford Street. Cracks have formed between the windows of the building. A section of the bottom storey has collapsed, the bricks spilling onto the footpath. Steel fencing and road cones have been placed on the street in front of the building as a cordon.
One limited edition poster with tube and information sheet. The poster has initial letters of the cities of New Zealand arranged to form an outline of the country. All are printed in black, except the 'C' of Christchurch which stands out in red. "United We Stand, 22 Feb 2011, 12.51pm" is printed in black. Poster commemorates the 2011 Christchurc...
This report reviews the literature on regeneration requirements of main canopy tree species in Westland. Forests managed for production purposes have to be harvested in an ecologically sustainable way; to maintain their natural character, harvesting should facilitate regeneration of target species and ensure that their recruitment is in proportion to the extent of extraction. The reasons for species establishing at any point in time are unclear; however, they are probably related to the availability of suitable microsites for establishment, the size of the canopy openings formed by disturbance, and whether or not seeds are available at or around the time of the disturbance. Age structures from throughout Westland show that extensive, similar-aged, post-earthquake cohorts of trees are a feature of the region. This suggests that infrequent, massive earthquakes are the dominant coarse-scale disturbance agent, triggering episodes of major erosion and sedimentation and leaving a strong imprint in the forest structure. In other forests, flooding and catastrophic windthrow are major forms of disturbance. The findings suggest that, in general, large disturbances are required for conifer regeneration. This has implications for any sustained yield management of these forests if conifers are to remain an important component. Any harvesting should recognise the importance for tree establishment of: forest floor microsites, such as fallen logs and tree tip-up mounds; and the variable way in which canopy gaps are formed. Harvesting should maintain the 'patchy' nature of the natural forest—large patches of dense conifers interspersed with more heterogeneous patches of mixed species.This is a client report commissioned by West Coast Conservancy and funded from the Unprogrammed Science Advice fund.
A photograph of the earthquake damage to the Kenton Chambers Building on Hereford Street. Large cracks have formed in the columns between the building's windows. A section of the bottom storey has collapsed and the bricks have spilled onto the footpath in front. Steel fences have been placed on the street as a cordon. In the distance there are many other earthquake-damaged buildings.
One landscape colour digital photograph taken on 26 May 2013 of London Street, Lyttelton. The photograph was taken from St Davids Street looking west. The roofs of the portable buildings forming the temporary Lyttelton Police station are visible in the foreground. The Lyttelton Port Company offices and Tunnel Portal are prominent in the midgrou...
In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.
Tantum Ergo Down in adoration falling, Lo! the sacred Host we hail, Lo! oe'r ancient forms departing Newer rites of grace prevail; Faith for all defects supplying, Where the feeble senses fail. Note: The text of this hymn was composed by St. Thomas Aquinas and, along with O Salutaris Hostia, is strongly associated with the Benedict...
Wellington is located on a fault line which will inevitably, one day be impacted by a big earthquake. Due to where this fault line geographically sits, the central city and southern suburbs may be cut off from the rest of the region, effectively making these areas an ‘island’. This issue has absorbed a lot of attention, in particular at a large scale by many different fields: civil engineering, architecture, infrastructure planning & design, policymaking. Due to heightened awareness, and evolved school of practice, contemporary landscape architects deal with post-disaster design – Christchurch, NZ has seen this. A number of landscape architects work with nature, following increased application of ecological urbanism, and natural systems thinking, most notably at larger scales. To create parks that are designed to flood, or implement projects to protect shorelines. A form of resilience less often considered is how design for the small scale - people’s 1:1 relationship with their immediate context in exterior space - can be influential in forming a resilient response to the catastrophe of a major earthquake. This thesis intends to provide a response to address the shift of scales, as a paradigm for preparation and recovery. After a large-scale earthquake, state and civic policies and agencies may or subsequentially not go into action. The most important thinking and acting will be what happens in the minds, and the immediate needs, of each and every person; and how they act communally. This is considered in general social terms in state and civic education programmes of civil defence, for example, but much less considered in how the physical design of the actual spaces we inhabit day-to-day can educate us to be mentally prepared to help each other survive a catastrophe. Specifically, the identification of design of typologies can provide these educative functions. Typology inherently a physical form or manipulation of a generic and substantial prototype applicable in contexts is something that exists in the mind. Working with the physical and social appearance and experience of typologies can also/will change people’s minds. Socially, and economically driven, the community-building power of community gardening is well-proven and documented, and a noticeably large part of contemporary landscape architecture. The designs of this thesis will focus on community gardening specifically to form typologies of resilience preparation and response to disaster. The foundation will remain at the small scale of the local community. The specific question this thesis poses: Can we design local typologies in landscape architecture to integrate community gardens, with public space by preparing for and acting as recovery from a disaster?
A scanned copy of a photograph of an optical diffraction pattern produced by the He-Ne Continuous Gas Laser used in David Lockwood's MSc research at the University of Canterbury. David explains that the photograph shows "a typical optical diffraction pattern obtained from the original red laser beam arising from a grating structure formed by the alignment of a colloid under the influence of a travelling sound wave".
More than a year after North Canterbury's 7.8 magnitude earthquake forced its closure, State Highway 1 north of Kaikoura will re-open to the public on Friday. Thousands of cars and trucks have been diverted inland since one million tonnes of rubble, in the form of 85 landslides, came down on the road, which was the main route between Picton and Christchurch. It's meant a tough year for some of those based along the highway. Reporter Maja Burry checked in with locals and filed this report.
A motion-blurred photograph of houses, with the Port Hills in the background. The photographer comments, "This I hope gives you a feel of what it feels like in an earthquake. When you spend your whole life thinking that you and your home are built on solid ground, it can be quite a shock when you find it is not. You can feel the house shaking like a dog with a toy, rising up violently underneath you or the most gentle form which is when the ground moves gently like a wave moving under a rowing boat. It is not just the movement, you often get a rumbling sound which can precede a violent shake or can result in no movement at all. This means that some vehicles can sound like the rumbling initially and in the early days would get your heart racing. Another form of stress is when big excavators as heavy as a tank move as you can feel the ground shake from streets away, but you do not always hear the engine. For most of us the problem when the shaking starts, is wondering if this is the start of an extremely violent earthquake or will it peter out".
This thesis examines how 18 University of Canterbury students based in Christchurch experienced housing insecurity during the three years after a series of major earthquakes from late 2010 and throughout 2011. I adopted a qualitative exploratory approach to gather students’ accounts and examine their experiences which were analysed using constructivist grounded theory methods. Three core categories were identified from the data: mobility, recreating security, and loss. Mobility included the effects of relocation and dislocation, as well as how the students searched for stability. Recreating security required a renewed sense of belonging and also addressed the need to feel physically safe. Lastly, loss included the loss of material possessions and also the loss of voice and political representation. The theory that emerged from these findings is that the extent to which students were able to control their mobility largely explained their experiences of housing insecurity. When students experienced a loss of control over their mobility they effectively addressed this by being resourceful and drawing on existing forms of capital. This resourcefulness generated a new form of capital, here called security capital, which represents a conceptual contribution to existing debates on students’ experiences of homelessness in a disaster context.
This paper explores the responses by a group of children to an art project that was undertaken by a small school in New Zealand after the September 2010 and February 2011 Christchurch earthquakes. Undertaken over a period of two years, the project aimed to find a suitable form of memorialising this significant event in a way that was appropriate and meaningful to the community. Alongside images that related directly to the event of the earthquakes, the art form of a mosaic was chosen, and consisted of images and symbols that clearly drew on the hopes and dreams of a school community who were refusing to be defined by the disaster. The paper 'writes' the mosaic by placing fragments of speech spoken by the children involved in relation to ideas about memory, affect, and the 'sublime', through the work of Jean-Francois Lyotard. The paper explores the mosaic as constituted by the literal and metaphorical 'broken pieces' of the city of Christchurch in ways that confer pedagogic value inscribed through the creation of a public art space by children. AM - Accepted Manuscript
A video of a protest at the Hagley Park netball courts against the Canterbury school reforms. 57 schools will be affected by the reforms, with 13 set to close and 25 undergoing some form of merger. The video includes speeches from Reverend Mike Coleman, Richard Chambers (Principal at Manning Intermediate), Jelena (a student at Greenpark School), Jennifer O'Lerry (Principal at Branston Intermediate), Eugenie Sage (Green Party MP), and Mia Harrison.
A video of an interview with Shaun Gladwell, a London-based artist, about the sculptures he designed for the Christchurch central city. Gladwell talks about how the sculptures are based on skateboard forms and have been designed to be used by skateboarders. He also talks about being inspired by YouTube videos of Christchurch skateboarders who used the damaged landscape in Christchurch as a skate park after the 22 February 2011 earthquake. The video includes clips from some of these YouTube videos.
This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.
Several 'quake victims' dive into a fissure and zip it up as Santa Claus in the form of a malignant '$' symbol leaps towards them yelling 'Ho! Ho! Ho!' One of the quake victims shouts 'Quick Hide! Christmas is getting closer!!' Context; the Christchurch earthquake on 4th September and all the subsequent aftershocks have cost many people a great deal of money. Quantity: 1 digital cartoon(s).
A research project on news coverage about Maori, has found that tangata whenua are still regarded as lower class citizens; Ngai Tahu iwi says it's learnt from the Canterbury earthquakes, just how important it is to safeguard important documents such as its whakapapa database in a digital form, in case there's another natural disaster; New Zealand's largest Maori owned fishing company wants to see the unique Maori story pushed by companies doing business in Asian countries; Meanwhile Ngati Kahungunu Chairman, Ngahiwi Tomoana, who was the business group convenor, says Maori business leaders are keen to set up an office in China
A research project on news coverage about Maori, has found that tangata whenua are still regarded as lower class citizens; Ngai Tahu iwi says it's learnt from the Canterbury earthquakes, just how important it is to safeguard important documents such as its whakapapa database in a digital form, in case there's another natural disaster; New Zealand's largest Maori owned fishing company wants to see the unique Maori story pushed by companies doing business in Asian countries; Meanwhile Ngati Kahungunu Chairman, Ngahiwi Tomoana, who was the business group convenor, says Maori business leaders are keen to set up an office in China.
A photograph of tape artists creating tape art bubbles in front of the mural. Erica Duthie form Tape Art NZ can be seen at a table talking to other tape artists. The photograph was taken at Street Talk, a Tape Art residency held from 6 - 9 March 2014. Street Talk was a collaborative project between All Right?, Healthy Christchurch and Tape Art NZ that had Christchurch communities create large tape art murals on the south wall of Community and Public Health.
A photograph of the earthquake damage to the Avonmore House on the corner of Hereford Street and Latimer Square. Large cracks have formed in the building, causing sections of the masonry to crumble. The windows on the Hereford Street side of the building have bent out of shape and many of the glass panes have shattered. USAR codes have been spray painted on the column next to the door. In the distance wire fencing has been placed across the street as a cordon.
Back in 2011, a slightly rusty three speed bike abandoned after the September earthquake on a demolition site in Christchurch caught the attention of John Smithies. He's 72, only slightly older than the bike, and he decided it would be just the bicycle to take on a epic, 2000 kilometre journey from Cape Reinga to Bluff. He started in September and expects to reach Bluff on Friday. He's making the epic journey in memory of his wife, Alison who died two years ago of a form of non-Hodgkin lymphoma. The ride down State Highway One is raising money for leukemia and blood cancer.
During the 2010/2011 Canterbury earthquakes, several reinforced concrete (RC) walls in multi-storey buildings formed a single crack in the plastic hinge region as opposed to distributed cracking. In several cases the crack width that was required to accommodate the inelastic displacement of the building resulted in fracture of the vertical reinforcing steel. This type of failure is characteristic of RC members with low reinforcement contents, where the area of reinforcing steel is insufficient to develop the tension force required to form secondary cracks in the surrounding concrete. The minimum vertical reinforcement in RC walls was increased in NZS 3101:2006 with the equation for the minimum vertical reinforcement in beams also adopted for walls, despite differences in reinforcement arrangement and loading. A series of moment-curvature analyses were conducted for an example RC wall based on the Gallery Apartments building in Christchurch. The analysis results indicated that even when the NZS 3101:2006 minimum vertical reinforcement limit was satisfied for a known concrete strength, the wall was still susceptible to sudden failure unless a significant axial load was applied. Additionally, current equations for minimum reinforcement based on a sectional analysis approach do not adequately address the issues related to crack control and distribution of inelastic deformations in ductile walls.
A large group of people stand on a huge sundial in a pattern that forms a map of New Zealand; the hand of the sundial casts a shadow that falls on nine minutes to one. Context - the people of New Zealand maintained a vigil of two minutes silence at 12.51 on 1 March which was exactly a week after the Christchurch earthquake of 22 February struck. Quantity: 1 digital cartoon(s).