The September Canterbury earthquake. These buildings have since been demolished. Note: these photos were taken on a cellphone; mind the quality.
The September Canterbury earthquake. These buildings have since been demolished. Note: these photos were taken on a cellphone; mind the quality.
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/2013-2/
A photograph of a block of earthquake-damaged buildings on Manchester Street. The outer wall of the second storey has collapsed, the bricks and other rubble spilling onto the footpath. Several cars have been crushed by the falling rubble.
A damaged house on Manchester Street. A section of wall where masonry has collapsed has been weather proofed with a black tarpaulin. The building's chimney has fallen on to its roof.
Damage to a section of the A and T Burt building on Ferry Road in Woolston. Masonry has collapsed from the top section of the building's front wall, exposing its ceiling.
Damage to a gable of the Music Centre of Christchurch building on Barbadoes Street. The gaps left by the collapse of the building's masonry have been weather proofed with a tarpaulin.
Damage to the Music Centre of Christchurch building on Barbadoes Street. Tarpaulins have been used to weather proof a gap in one of the building's gables from where masonry has fallen.
The three-storey masonry building which housed the Ruben Blades Hairdressing Academy, and the Honey Pot Caf_. Fencing and road cones have been placed along the footpath to keep the public away.
New Zealand’s stock of unreinforced masonry (URM) bearing wall buildings was principally constructed between 1880 and 1935, using fired clay bricks and lime or cement mortar. These buildings are particularly vulnerable to horizontal loadings such as those induced by seismic accelerations, due to a lack of tensile force-resisting elements in their construction. The poor seismic performance of URM buildings was recently demonstrated in the 2011 Christchurch earthquake, where a large number of URM buildings suffered irreparable damage and resulted in a significant number of fatalities and casualties. One of the predominant failure modes that occurs in URM buildings is diagonal shear cracking of masonry piers. This diagonal cracking is caused by earthquake loading orientated parallel to the wall surface and typically generates an “X” shaped crack pattern due to the reversed cyclic nature of earthquake accelerations. Engineered Cementitious Composite (ECC) is a class of fiber reinforced cement composite that exhibits a strain-hardening characteristic when loaded in tension. The tensile characteristics of ECC make it an ideal material for seismic strengthening of clay brick unreinforced masonry walls. Testing was conducted on 25 clay brick URM wallettes to investigate the increase in shear strength for a range of ECC thicknesses applied to the masonry wallettes as externally bonded shotcrete reinforcement. The results indicated that there is a diminishing return between thickness of the applied ECC overlay and the shear strength increase obtained. It was also shown that, the effectiveness of the externally bonded reinforcement remained constant for one and two leaf wallettes, but decreased rapidly for wall thicknesses greater than two leafs. The average pseudo-ductility of the strengthened wallettes was equal to 220% of that of the as-built wallettes, demonstrating that ECC shotcrete is effective at enhancing both the in-plane strength and the pseudo-ductility of URM wallettes. AM - Accepted Manuscript
It is well known that buildings constructed using unreinforced masonry (URM) are susceptible to damage from earthquake induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent New Zealand example of destructive earthquakes, which have drawn people's attention to the inherent seismic weaknesses of URM buildings and anchored masonry veneer systems in New Zealand. A brief review of the data collected following the 2010 Darfield earthquake and more comprehensive documentation of data that was collected following the 2011 Christchurch earthquake is presented, along with the findings from subsequent data interrogation. Large stocks of earthquake prone vintage URM buildings that remain in New Zealand and in other seismically active parts of the world result in the need for minimally invasive and cost effective seismic retrofit techniques. The principal objective of the doctoral research reported herein was to investigate the applicability of near surface mounted (NSM) carbon fibre reinforced polymer (CFRP) strips as a seismic improvement technique. A comprehensive experimental program consisting of 53 pull tests is presented and is used to assess the accuracy of existing FRP-to-masonry bond models, with a modified model being proposed. The strength characteristics of vintage clay brick URM wall panels from two existing URM buildings was established and used as a benchmark when manufacturing replica clay brick test assemblages. The applicability of using NSM CFRP strips as a retrofitting technique for improving the shear strength and the ductility capacity of multi-leaf URM walls constructed using solid clay brick masonry is investigated by varying CFRP reinforcement ratios. Lastly, an experimental program was undertaken to validate the proposed design methodology for improving the strength capacity of URM walls. The program involved testing full-scale walls in a laboratory setting and testing full-scale walls in-situ in existing vintage URM buildings. Experimental test results illustrated that the NSM CFRP technique is an effective method to seismically strengthen URM buildings.
The performance of retrofitted unreinforced masonry (URM) bearing wall buildings in Christchurch is examined, considering ground motion recordings from multiple events. Suggestions for how the experiences in Christchurch might be relevant to retrofit practices common to New Zealand, U.S. and Canada are also provided. Whilst the poor performance of unretrofitted URM buildings in earthquakes is well known, much less is known about how retrofitted URM buildings perform when subjected to strong ground shaking.
The former Canterbury Public Library building on the corner of Hereford Street and Cambridge Terrace. The building has been encircled by a safety fence to protect pedestrians and motorists from falling masonry.
Damage to one of the front towers of the Durham Street Methodist Church. Some masonry from the corner of the tower has collapsed, and the structure has been secured by blue straps.
This thesis describes the strategies for earthquake strengthening vintage clay bricks unreinforced masonry (URM) buildings. URM buildings are well known to be vulnerable to damage from earthquake-induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent destructive natural disaster that resulted in the deaths of 185 people. The earthquake events had drawn people’s attention when URM failure and collapse caused about 39 of the fatality. Despite the poor performance of URM buildings during the 2010/2011 Canterbury earthquakes, a number of successful case study buildings were identified and their details research in-depth. In order to discover the successful seismic retrofitting techniques, two case studies of retrofitted historical buildings located in Christchurch, New Zealand i.e. Orion’s URM substations and an iconic Heritage Hotel (aka Old Government Building) was conducted by investigating and evaluating the earthquake performance of the seismic retrofitting technique applied on the buildings prior to the 2010/2011 Canterbury earthquakes and their performance after the earthquakes sequence. The second part of the research reported in this thesis was directed with the primary aim of developing a cost-effective seismic retrofitting technique with minimal interference to the vintage clay-bricks URM buildings. Two retrofitting techniques, (i) near-surface mounted steel wire rope (NSM-SWR) with further investigation on URM wallettes to get deeper understanding the URM in-plane behaviour, and (ii) FRP anchor are reported in this research thesis.
A view across Lichfield Street to the historic Mayfair building. Masonry has collapsed from the top storey of the building and the resulting gaps have been weather proofed with timber and building paper.
A view across Lichfield Street to the historic Mayfair building. Masonry has collapsed from the top storey of the building and the resulting gaps have been weather proofed with timber and building paper.
A view inside the safety fence surrounding the Cranmer Courts on Montreal Street. Sections of masonry from the building have collapsed onto the footpath. In the background a crane can be seen working on the building.
Damage to one of the gables of the Music Centre of Christchurch building on Barbadoes Street. The gaps left by the collapse of the building's masonry have been weather proofed with a tarpaulin.
Damage to one of the gables of the Music Centre of Christchurch building on Barbadoes Street. The gaps left by the collapse of the building's masonry have been weather proofed with a tarpaulin.
A photograph of the Durham Street Methodist Church blocked off by wire fencing. The tip of the façade is damaged.
Damage to the former Sumner Borough Council building. The brickwork is badly cracked, and parts of the wall have collapsed, exposing the interior. Shipping containers below the building protect the street from falling masonry.
A photograph of cracks around a window of the Observatory tower at the Christchurch Arts Centre. The cracks formed as a result of the 4 September 2010 earthquake.
A photograph of cracks around a window of the Observatory tower at the Christchurch Arts Centre. The cracks formed as a result of the 4 September 2010 earthquake.
A photograph of cracks around a window of the Observatory tower at the Christchurch Arts Centre. The cracks formed as a result of the 4 September 2010 earthquake.
Damage to the Repertory Theatre building. Part of the facade has collapsed onto the awning below, and bricks and masonry have spilled across the street. The building is cordoned off with road cones and police tape.
A video recording of a lecture presented by Professor Rajesh Dhakal and Professor Andy Buchanan as part of the 2011 University of Canterbury Earthquake Lecture Series.
The Seido Karate Shibu building on Barbadoes Street. The top section of the building has been weather proofed with plywood where the masonry has fallen away and its side has been braced with timber.
Damage to the former Sumner Borough Council building. The brickwork is badly cracked, and parts of the wall have collapsed, exposing the interior. Shipping containers below the building protect the street from falling masonry.
Damage to the former Sumner Borough Council building. The brickwork is badly cracked, and parts of the wall have collapsed, exposing the interior. Shipping containers below the building protect the street from falling masonry.