Search

found 261 results

Images, eqnz.chch.2010

The unforgettable beauty of lavender Occurs in both the earth As well as part of the many changing Shades of the daily heavens on high. Is quickly there, and then is gone. Light violet, lavender, How unique is its special glow, Colored in nature in light lilac, Amethyst, and airy, purple indigo. From a poem by Gil Saenz

Images, eqnz.chch.2010

This statue of the Virgin Mary stood in the south tower of The Cathedral of the Blessed Sacrament and had been facing inside from when she was placed there and through the September 2010 earthquake. That changed on February 22 2010 at 12.51pm when Christchurch was rocked by a 6.3 magnitude earthquake. During the violent shaking motion Mary was t...

Images, eqnz.chch.2010

A local inspecting the damage to St Lukes Church after the 6.3 quake hit. For whom the bell tolls Time marches on For whom the bell tolls Take a look to the sky just before you die It's the last time you will Blackened roar, massive roar, fills the crumbling sky Shattered goal fills his soul with a ruthless cry Stranger now are his eyes to this...

Images, eqnz.chch.2010

The Christchurch Cathedral Square showing the Anglican Cathedral after loosing its tower and spire after the 6.3 quake hit Christchurch 22 February 2011. This image also shows the remains of the very heavy snow fall we had on Monday 25 July 2011. The centre of the city is still cordoned off. This image was taken from a helicopter flight over the...

Images, eqnz.chch.2010

This winter-eve is warm, Humid the air! leafless, yet soft as spring, The tender purple spray on copse and briers! And that sweet city with her dreaming spires, She needs not June for beauty's heightening, Lovely all times she lies, lovely to-night!— From "Thyrsis: A Monody" by Matthew Arnold 1822–1888

Images, eqnz.chch.2010

Sadly the Chapel has been badly damaged in the magnitude 6.3 earthquake that hit Christchurch 22 February 2011. See below. The Rose Historic Chapel formerly St Mary’s Convent Chapel is the sole survivor of a group of heritage buildings in Christchurch that once comprised the St Mary’s Convent complex for the Sisters of Mercy in North Colombo St...

Images, eqnz.chch.2010

Showing Ruben Blades (top-right section of image) on the corner of Lichfield and Manchester Streets after the 6.3 quake hit Christchurch 22 February 2011 and the building being demolished along with many others. This image also shows the remains of the very heavy snow fall we had on Monday 25 July 2011. The centre of the city is still cordoned o...

Images, eqnz.chch.2010

Sadly the Chapel has been badly damaged in the magnitude 6.3 earthquake that hit Christchurch 22 February 2011. See below. The Rose Historic Chapel formerly St Mary’s Convent Chapel is the sole survivor of a group of heritage buildings in Christchurch that once comprised the St Mary’s Convent complex for the Sisters of Mercy in North Colombo St...

Images, eqnz.chch.2010

Detail of the Christchurch Anglicain Cathedral viewed from a path between the new Cashel Mall shopping area and Cathedral Square which was opened two weekends ago. This is the first time this section of the city has been open to the public since the 22 February 2011 earthquake. It will be closed off again after 11 December 2011 for the demolitio...

Images, eqnz.chch.2010

Cleaning up Manning Signs of the silt from liquefaction. Three fellow workers man the shovels while two building engineers talk to the boss (hidden). After doing the car park we then turned our hands to the inside of the factory, once clearance was given that we could go inside.

Research papers, University of Canterbury Library

The timeliness and quality of recovery activities are impacted by the organisation and human resourcing of the physical works. This research addresses the suitability of different resourcing strategies on post-disaster demolition and debris management programmes. This qualitative analysis primarily draws on five international case studies including 2010 Canterbury earthquake, 2009 L’Aquila earthquake, 2009 Samoan Tsunami, 2009 Victorian Bushfires and 2005 Hurricane Katrina. The implementation strategies are divided into two categories: collectively and individually facilitated works. The impacts of the implementation strategies chosen are assessed for all disaster waste management activities including demolition, waste collection, transportation, treatment and waste disposal. The impacts assessed include: timeliness, completeness of projects; and environmental, economic and social impacts. Generally, the case studies demonstrate that detritus waste removal and debris from major repair work is managed at an individual property level. Debris collection, demolition and disposal are generally and most effectively carried out as a collective activity. However, implementation strategies are affected by contextual factors (such as funding and legal constraints) and the nature of the disaster waste (degree of hazardous waste, geographical spread of waste etc.) and need to be designed accordingly. Community involvement in recovery activities such as demolition and debris removal is shown to contribute positively to psychosocial recovery.

Research papers, The University of Auckland Library

As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

This paper provides a photographic tour of the ground-surface rupture features of the Greendale Fault, formed during the 4th September 2010 Darfield Earthquake. The fault, previously unknown, produced at least 29.5 km of strike-slip surface deformation of right-lateral (dextral) sense. Deformation, spread over a zone between 30 and 300 m wide, consisted mostly of horizontal flexure with subsidiary discrete shears, the latter only prominent where overall displacement across the zone exceeded about 1.5 m. A remarkable feature of this event was its location in an intensively farmed landscape, where a multitude of straight markers, such as fences, roads and ditches, allowed precise measurements of offsets, and permitted well-defined limits to be placed on the length and widths of the surface rupture deformation.