Search

found 3075 results

Images, UC QuakeStudies

A digitally manipulated photograph of twisted reinforcing rods amongst the rubble from the demolition of QEII. The photographer comments, "These rarely seen worms live in the pressurised earth under the foundations of buildings. They need a damp soil and be under at least 100 pounds of pressure per square inch. After the destructive force of an earthquake they swiftly rise to the surface through gaps in the rubble. Unfortunately they quickly die and then crystallise as hard as iron in the dry low pressure air".

Images, eqnz.chch.2010

8 Velsheda Street, Bexley, Christchurch, across the road from my house was demolished a week or so ago, just one of many demolitions of Red Zone properties at the moment. This house was about ten years old and suffered land damage during the 4th September 2010 and 22nd February 2011 earthquakes. The same fate awaits my house later in the year o...

Research papers, University of Canterbury Library

Designing a structure for higher- than-code seismic performance can result in significant economic and environmental benefits. This higher performance can be achieved using the principles of Performance-Based Design, in which engineers design structures to minimize the probabilistic lifecycle seismic impacts on a building. Although the concept of Performance-Based Design is not particularly new, the initial capital costs associated with designing structures for higher performance have historically hindered the widespread adoption of performance-based design practices. To overcome this roadblock, this research is focused on providing policy makers and stakeholders with evidence-based environmental incentives for designing structures in New Zealand for higher seismic performance. In the first phase of the research, the environmental impacts of demolitions in Christchurch following the Canterbury Earthquakes were quantified to demonstrate the environmental consequences of demolitions following seismic events. That is the focus here. A building data set consisting of 142 concrete buildings that were demolished following the earthquake was used to quantify the environmental impacts of the demolitions in terms of the embodied carbon and energy in the building materials. A reduced set of buildings was used to develop a material takeoff model to estimate material quantities in the entire building set, and a lifecycle assessment tool was used to calculate the embodied carbon and energy in the materials. The results revealed staggering impacts in terms of the embodied carbon and energy in the materials in the demolished buildings. Ongoing work is focused developing an environmental impact framework that incorporates all the complex factors (e.g. construction methodologies, repair methodologies (if applicable), demolition methodologies (if applicable), and waste management) that contribute to the environmental impacts of building repair and demolition following earthquakes.

Images, UC QuakeStudies

A photograph submitted by Matt Pickering to the QuakeStories website. The description reads, "The army on hand, helping prepare for the demolition of the Strategy Building".

Images, UC QuakeStudies

A photograph submitted by Bettina Evans to the QuakeStories website. The description reads, "Demolition of old Fire Station/Library in Lyttelton, corner London Street/Oxford Street".