Search

found 2499 results

Images, UC QuakeStudies

A photograph of the earthquake damage to the Registry Building on the corner of Montreal and Worcester Streets. Masonry around the gable has collapsed onto the footpath below. Steel bracing has been used to hold up the remaining masonry. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the Observatory tower at the Christchurch Arts Centre. There are cracks in the masonry of the tower near where the two storeys join. The cracks formed as a result of the 4 September 2010 earthquake. Wire fencing has been placed at the entrance to the courtyard in front as a cordon.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape has been used to cordon off the house. Public notices can be seen on the fence, on the roof of the collapsed section and the section behind.

Images, UC QuakeStudies

A photograph submitted by Scott Thomas to the QuakeStories website. The description reads, "The picture is of St Martins, a suburb just 2 minutes drive up the street from my place. The photo does not do it justice but this road was like the moon, it used to be flat and it is wet due to burst pipes. Photo taken shortly after the 22 Feb 2011 earthquake".

Research papers, University of Canterbury Library

A significant portion of economic loss from the Canterbury Earthquake sequence in 2010-2011 was attributed to losses to residential buildings. These accounted for approximately $12B of a total $40B economic losses (Horspool, 2016). While a significant amount of research effort has since been aimed at research in the commercial sector, little has been done to reduce the vulnerability of the residential building stock.

Images, UC QuakeStudies

A photograph of the site of a demolished house on the corner of Springfield Road and Bealey Avenue. "No go" has been spray-painted on the earthquake-damaged fence. Wire fencing and police tape has been placed across the entrance as a cordon. In the background, rubble from the demolished building can be seen.

Images, UC QuakeStudies

A photograph of the earthquake damage to a building in Lyttelton. The brick wall has crumbled and the bricks have spilt onto the pavement below. The pink batts are now exposed and the remaining wall is severely cracked. Wire fencing and tape reading "danger keep out" has been placed around the building as a cordon.

Research papers, University of Canterbury Library

The operation of telecommunication networks is critical during business as usual times, and becomes most vital in post-disaster scenarios, when the services are most needed for restoring other critical lifelines, due to inherent interdependencies, and for supporting emergency and relief management tasks. In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure appears to be underrepresented in the literature. The FP6 QuakeCoRE project “Performance of the Telecommunication Network during the Canterbury Earthquake Sequence” will provide a critical contribution to bridge this gap. Thanks to an unprecedented collaboration between national and international researchers and highly experienced asset managers from Chorus, data and evidences on the physical and functional performance of the telecommunication network after the Canterbury Earthquakes 2010-2011 have been collected and collated. The data will be processed and interpreted aiming to reveal fragilities and resilience of the telecommunication networks to seismic events

Research Papers, Lincoln University

Imagined landscapes find their form in utopian dreaming. As ideal places, utopias are set up according to the ideals of their designers. Inevitably, utopias become compromised when they move from the imaginary into the actual. Opportunities to create utopias rely largely on a blank slate, a landscape unimpeded by the inconveniences of existing occupation – or even topography. Christchurch has seen two utopian moments. The first was at the time of European settlement in the mid-nineteenth century, when imported ideals provided a model for a new city. The earthquakes of 2010 and 2011 provided a second point at which utopian dreaming spurred visions for the city. Christchurch’s earthquakes have provided a unique opportunity for a city to re-imagine itself. Yet, as is the fate for all imaginary places, reality got in the way.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Major Hornbrook Drive. The chimney has collapsed and many of the tiles have been lifted on the roof. Tarpaulins have been laid over the holes in the roof as waterproofing, but the closest has shredded. Gaps can be seen between the bricks in the wall and the wall to the left has crumbled.

Images, UC QuakeStudies

A photograph of rubble from a number of earthquake-damaged buildings on Bealey Avenue. Bricks from the building in the distance have spilled onto the footpath in front and wire fencing has been used to cordon it off. In the foreground, rubble from a demolished house can be seen. Cordon tape reading "danger keep out" has been draped across the fence.

Images, UC QuakeStudies

A photograph of paper hearts with inspirational quotes pegged to a cordon fence. In the background, rubble from an earthquake demolished building can be seen. The hearts read, "'No matter what, no matter where, it's always home if love is there.' P.L. Berger" and "'All the word is full of suffering; it is also full of overcoming.' Helen Keller".

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Woodham Road. The bottom storey of the house has crumbled, bringing the top storey to the ground. A large pile of bricks and two bay windows now lie beneath the top storey. A red sticker on one of the bay windows indicates that the house is unsafe to enter.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Major Hornbrook Drive. The chimney has collapsed and many of the tiles have been lifted on the roof. Tarpaulins have been laid over the holes in the roof as waterproofing, but the closest has shredded. Gaps can be seen between the bricks in the wall and the wall to the left has crumbled.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Christchurch Chinese Methodist Church on Papanui Road. The gable walls have crumbled, bricks spilling onto the ground. The tower has been removed and braced on the ground in front. Cordon fencing has been placed around the building. Parts of the fence have been decorated with hearts and the word 'love'.

Images, UC QuakeStudies

A photograph of an earthquake-damaged building in Christchurch. The wall on the side of the house has crumbled, and the bricks have fallen onto the fence and damaged it. Wooden planks have been used to brace the wall towards the back of the property. A red sticker on the front window indicates that the house is unsafe to enter.

Images, UC QuakeStudies

A photograph of the earthquake damage to a house on Major Hornbrook Drive. The chimney has collapsed and many of the tiles have been lifted on the roof. Tarpaulins have been laid over the holes in the roof as waterproofing, but the closest has shredded. Gaps can be seen between the bricks in the wall and the wall to the left has crumbled.

Articles, UC QuakeStudies

A paper submitted by Andrew Moore in partial fulfilment of the degree of Bachelor of Music with Honours, covering the effects of the Canterbury earthquakes on the musical life of Christchurch. Dissertation supervised by Dr Elaine Dobson, University of Canterbury School of Music. All photographs from The Press are copyright Fairfax Media and are used with permission.

Images, UC QuakeStudies

A photograph of the earthquake damage to Knox Church on the corner of Bealey Avenue and Victoria Street. The walls of the gables have crumbled, the bricks falling onto the footpath. Many have been cleared away and now sit in a pile on the road. Road cones, metal fences, and cordon tape have been placed around the building.

Images, UC QuakeStudies

A photograph of the earthquake damage to the corner of Woodham Road and Avonside Drive. There are large cracks in the road, and flooding and liquefaction. Wire fencing and road cones have been placed around parts of the road that are unsafe. Two signs reading, "Road closed" and, "No entry" can be seen at the entrance to Avonside Drive.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility to movement during high-wind loading. The precursor to research in the field of isolation of residential buildings was the 1994 Northridge Earthquake (6.7 MW) in the United States and the 1995 Kobe Earthquake (6.9 MW) in Japan. While only a small number of lives were lost in residential buildings in these events, the economic impact was significant with over half of earthquake recovery costs given to repair and reconstruction of residential building damage. A value case has been explored to highlight the benefits of seismically isolated residential buildings compared to a standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used by researchers to determine vulnerability functions for the current light-frame wood building stock. By further considering the loss attributed to drift and acceleration sensitive components, and a simplified single degree of freedom (SDOF) building model, a method for determining vulnerability functions for seismic isolated buildings was developed. Vulnerability functions were then applied directly in a loss assessment using the GNS developed software, RiskScape. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building and as a result, the monetary savings in a given earthquake scenario were significant. This work is expected to drive further interest for development of solutions for the seismic isolation of residential dwellings, of which one option is further considered and presented herein.

Images, UC QuakeStudies

A photograph of signs on a wall in the Christchurch Art Gallery. The signs read, "Final media trip to the CTV building, 15:00 hours, media opportunity with National Controller and rescue services. This is the last scheduled media hour into the red zone", "Media Briefings, Tuesday 8 March: 10:30 hours, Wednesday 9 March: 15:00 hours, in auditorium" and "Please switch off your cell phones before entering media briefings. Thank you". There is also a diagram of the first and ground floor of the art gallery. The Christchurch Art Gallery served as the temporary Civil Defence headquarters after the 22 February 2011 earthquake.

Images, UC QuakeStudies

The northern side of the Christ Church Cathedral with the cafe and store in the foreground. Shipping containers have been placed around the eastern side of the Cathedral to protect the road from falling debris. Wire fencing has also been placed around the building as a cordon. To the right, the damaged and party deconstructed tower can be seen with the missing spire which fell during the 22 February 2011 earthquake.

Research papers, University of Canterbury Library

1. INTRODUCTION. Earthquakes and geohazards, such as liquefaction, landslides and rock falls, constitute a major risk for New Zealand communities and can have devastating impacts as the Canterbury 2010/2011 experience shows. Development patterns expose communities to an array of natural hazards, including tsunamis, floods, droughts, and sea level rise amongst others. Fostering community resilience is therefore vitally important. As the rhetoric of resilience is mainstreamed into the statutory framework, a major challenge emerges: how can New Zealand operationalize this complex and sometimes contested concept and build ‘community capitals’? This research seeks to provide insights to this question by critically evaluating how community capitals are conceptualized and how they can contribute to community resilience in the context of the Waimakariri District earthquake recovery and regeneration process.

Research papers, The University of Auckland Library

The Canterbury earthquake sequence of 2010-2011 wrought ruptures in not only the physical landscape of Canterbury and Christchurch’s material form, but also in its social, economic, and political fabrics and the lives of Christchurch inhabitants. In the years that followed, the widespread demolition of the CBD that followed the earthquakes produced a bleak landscape of grey rubble punctuated by damaged, abandoned buildings. It was into this post-earthquake landscape that Gap Filler and other ‘transitional’ organisations inserted playful, creative, experimental projects to bring life and energy back into the CBD. This thesis examines those interventions and the development of the ‘Transitional Movement’ between July 2013 and June 2015 via the methods of walking interviews and participant observation. This critical period in Christchurch’s recovery serves as an example of what happens when do-it-yourself (DIY) urbanism is done at scale across the CBD and what urban experimentation can offer city-making. Through an understanding of space as produced, informed by Lefebvre’s thinking, I explore how these creative urban interventions manifested a different temporality to orthodox planning and demonstrate how the ‘soft’ politics of these interventions contain the potential for gentrification and also a more radical politics of the city, by creating an opening space for difference.

Videos, UC QuakeStudies

A video of a presentation by Dr Duncan Webb, Partner at Lane Neave, during the third plenary of the 2016 People in Disasters Conference. The presentation is titled, "Loss of Trust and other Earthquake Damage".The abstract for this presentation reads as follows: It was predictable that the earthquakes which hit the Canterbury region in 2010 and 2011 caused trauma. However, it was assumed that recovery would be significantly assisted by governmental agencies and private insurers. The expectation was that these organisations would relieve the financial pressures and associated anxiety caused by damage to property. Some initiatives did exactly that. However, there are many instances where difficulties with insurance and related issues have exacerbated the adverse effects of the earthquakes on people's wellness. In some cases, stresses around property issues have become and independent source of extreme anxiety and have had significant impacts on the quality of people's lives. Underlying this problem is a breakdown in trust between citizen and state, and insurer and insured. This has led to a pervading concern that entitlements are being denied. While such concerns are sometimes well founded, an approach which is premised on mistrust is frequently highly conflicted, costly, and often leads to worse outcomes. Professor Webb will discuss the nature and causes of these difficulties including: the complexity of insurance and repair issues, the organisational ethos of the relevant agencies, the hopes of homeowners and the practical gap which commonly arises between homeowner expectation and agency response. Observations will be offered on how the adverse effects of these issues can be overcome in dealing with claimants, and how such matters can be managed in a way which promotes the wellness of individuals.

Research Papers, Lincoln University

Numerous studies have shown that urban soils can contain elevated concentrations of heavy metals (HMs). Christchurch, New Zealand, is a relatively young city (150 years old) with a population of 390,000. Most soils in Christchurch are sub-urban, with food production in residential gardens a popular activity. Earthquakes in 2010 and 2011 have resulted in the re-zoning of 630 ha of Christchurch, with suggestions that some of this land could be used for community gardens. We aimed to determine the HM concentrations in a selection of suburban gardens in Christchurch as well as in soils identified as being at risk of HM contamination due to hazardous former land uses or nearby activities. Heavy metal concentrations in suburban Christchurch garden soils were higher than normal background soil concentrations. Some 46% of the urban garden samples had Pb concentrations higher than the residential land use national standard of 210 mg kg⁻¹, with the most contaminated soil containing 2615 mg kg⁻¹ Pb. Concentrations of As and Zn exceeded the residential land use national standards (20 mg kg⁻¹ As and 400 mg kg⁻¹ Zn) in 20% of the soils. Older neighbourhoods had significantly higher soil HM concentrations than younger neighbourhoods. Neighbourhoods developed pre-1950s had a mean Pb concentration of 282 mg kg⁻¹ in their garden soils. Soil HM concentrations should be key criteria when determining the future land use of former residential areas that have been demolished because of the earthquakes in 2010 and 2011. Redeveloping these areas as parklands or forests would result in less human HM exposure than agriculture or community gardens where food is produced and bare soil is exposed.

Research papers, University of Canterbury Library

Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. The liquefaction behaviour of Christchurch fines-containing (silty) sands is investigated through a series of Direct Simple Shear (DSS) tests. This type of test better resembles earthquake loading conditions in soil deposits compared to cyclic triaxial tests. Soil specimens are reconstituted in the laboratory with the water sedimentation technique. This preparation method yields soil fabrics similar to those encountered in fluvial soil deposits, which are common in the Christchurch area. Test results provide preliminary indications on how void ratio, relative density, preparation method and fines content influence the cyclic liquefaction behaviour of sand-silt mixtures depending on the properties of host sand and silt.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Carlton Hotel on the corner of Papanui Road and Bealey Avenue. The wall of the top storey of the building has crumbled, and bricks have fallen onto the footpath. Wire fencing, road cones, and cordon tape have been placed around the building as a cordon. Scaffolding and steel bracing can be seen against the front of the building.

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.