St John's Presbyterian Church on Winchester Street in Lyttelton. The ground around the church is strewn with masonry that has fallen from the church's walls and collapsed tower. The building's front door has been red-stickered and a sign that reads "No entry" is stuck to it.
The base of the tower on the right of this picture has sunk about 25cm so that the lower course of bricks have disappeared below ground level. Meanwhile the other end of the building has sunk about 50cm splitting the building into thirds. The sand you can see is what came bubbling up out of the ground due to liquifaction. Unfortunately the build...
The Harbourlight Theatre on London Street in Lyttelton. There is cracking along the side of the building and damage to the domes on top of the towers. Bracing has been placed at the top to limit further damage and to stop debris from falling on the road.
The north side of the Christ Church Cathedral with the partially demolished tower visible, a pile of rubble in front. Bracing has been placed up against the front of the building to hold the wall together. The Citizens' Memorial can be seen to the left.
The north side of the Christ Church Cathedral with the partially demolished tower visible, a pile of rubble in front. Bracing has been placed up against the front of the building to hold the wall together. The Citizens' Memorial can be seen to the left.
The Harbourlight Theatre on London Street in Lyttelton. There is cracking along the side of the building and damage to the domes on top of the towers. Bracing has been placed at the top to limit further damage and to stop debris from falling on the road.
Members of the public speaking with police officers on the corner of Durham Street and Armagh Street in the aftermath of the 22 February earthquake. On the right the timber section of the historic Provincial Council Chambers can be seen, including the clock tower which has collapsed onto the road. Armagh Street leading into the city has been cordoned off by red tape.
Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.
Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.
Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.
Members of the public take photographs of the damaged Christ Church Cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.
A photograph of the Christchurch Arts Centre taken from Rolleston Avenue. A spire has been removed from one of the towers and braced on the footpath in front of the building. Wire fencing and road cones have been used to cordon off one side of the road.
The Wizard of Christchurch talks to a member of the public outside the damaged cathedral. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look at the cathedral. The tower and the front wall of the building have partially collapsed. Steel bracing has been added to the front wall for support.
A view of Worcester Boulevard, looking east towards Christ Church Cathedral. Bricks from the front of the building and the tower can be seen on the ground. People are making their way down the street out of the central city. Members of the Emergency Management personnel, in high-visibility vests, can be seen.
The clock tower of the former Railway Station, encased in plywood to prevent further damage. A banner sponsored by The Press hangs below the clock, covered with words which symbolise the September earthquake. The photographer comments, "After the September earthquake the clocked stopped at 04:35 and everyone campaigned to have this clock left as it was. At that time the building was believed to be OK. Two more earthquakes later and the possible memorial will probably end up like a lot of Christchurch's heritage buildings on a huge pile of stone and bricks in Bottle Lake Forest".
A photograph of the earthquake-damaged Cathedral of the Blessed Sacrament on Barbadoes Street. Rubble from the collapsed tower is lying on the ground in front. A car has been crushed under this rubble. Wire fencing, shipping containers, and road cones have been placed around the building as a cordon.
A photograph of the earthquake-damaged Cathedral of the Blessed Sacrament on Barbadoes Street. Rubble from the collapsed tower is lying on the ground in front. A car has been crushed under this rubble. Wire fencing, shipping containers, and road cones have been placed around the building as a cordon.
A photograph of the earthquake-damaged Cathedral of the Blessed Sacrament on Barbadoes Street. Rubble from the collapsed tower is lying on the ground in front. A car has been crushed under this rubble. Wire fencing, shipping containers, and road cones have been placed around the building as a cordon.
A photograph of the earthquake damage to the Christchurch Chinese Methodist Church on Papanui Road. The gable walls have crumbled, bricks spilling onto the ground. The tower has been removed and braced on the ground in front. Cordon fencing has been placed around the building. Parts of the fence have been decorated with hearts and the word 'love'.
One landscape colour digital photograph taken on 15 June 2011 showing earthquake damage to the Presbyterian Church of St John in Winchester Street, Lyttelton. Photograph shows the collapsed roof and tower. The photograph is taken from the southern side of the church. Architect The destructive force of the 14 June 2011 earthquakes on buildings in...
The Townsend Observatory is located in the Arts Centre of Christchurch, in what used to be Canterbury College (now University of Canterbury). The Townsend telescope itself is a historic 6-inch Cooke refractor built in 1864 for early Christchurch colonist, Mr James Townsend, and gifted by him to Christchurch College in 1891. At the same time, the Canterbury Astronomical Society handed over its funds to the College to help erect an observatory. The College used this, and money it had set aside for a medical school, to build a biological laboratory with an attached observatory tower, which was completed in 1896. The Biology Building and Observatory Tower was the last major design by architect Benjamin Mountfort. Mr Walter Kitson was appointed custodian of the telescope and regular public open nights commenced. and continued until 2010, with the telescope being operated by students of the Department of Physics and Astronomy, University of Canterbury. The Observatory Tower was badly damaged in the 4 September 2010 earthquake and collapsed in the 22 February 2011 earthquake. The telescope was badly damaged by the collapse, but, amazingly, the optics were found entirely intact. The Department of Physics and Astronomy plans to restore the Townsend Telescope so that it can be returned to a replica Observatory Tower in its central city home, enabling the people of Christchurch, and visitors, to enjoy views of the night sky through this beautiful and historic telescope once again.
A proposed design by John Raven for a new cathedral, tied to a cordon fence. Clarendon Tower can be seen in the background. The photographer comments, "Someone is asking for designs for a new Christchurch Cathedral after it was announced that the old historical building will not be repaired, to be put on the fences through which people can see the de-construction of the old one. This design looks a great one to me".
In the aftermath of the 2010-2011 Canterbury earthquakes in New Zealand, the residual capacity and reparability of damaged reinforced concrete (RC) structures was an issue pertinent to building owners, insurers, and structural engineers. Three precast RC moment-resisting frame specimens were extracted during the demolition of the Clarendon Tower in Christchurch after sustaining earthquake damage. These specimens were subjected to quasi-static cyclic testing as part of a research program to determine the reparability of the building. It was concluded that the precast RC frames were able to be repaired and retrofitted to an enhanced strength capacity with no observed reduction in displacement capacity, although the frames with “shear-ductile” detailing exhibited less displacement ductility capacity and energy dissipation capacity than the more conventionally detailed RC frames. Furthermore, the cyclic test results from the earthquake-damaged RC frames were used to verify the predicted inelastic demands applied to the specimens during the 2010-2011 Canterbury earthquakes. https://www.concrete.org/publications/acistructuraljournal.aspx
The top frame shows the barbed wire and watch tower of a prison. There is a comment about someone wanting the warmth of a prison cell. The second frame shows prison staff chatting at cross purposes about a petition from Christchurch with homes wrecked by earthquake pleading to be allowed to live in prison and the sentence imposed on the Bridgecorp directors who have been accused of defrauding investors. Colour and black and white versions available Quantity: 2 digital cartoon(s).
Christ Church Cathedral, Christchurch, with spire being rebuilt after the 1901 earthquake. Photographer unidentified. The nave, tower and spire of Christchurch Cathedral was completed in 1881. Work on completeing the rest of the building began in 1900. In 1902 the transcepts were finished and work started on the chancel and apse. An earthquake in 1901 cracked the upper part of the spire in two places. In this photograph which dates from late 1902/1903 (see scaffolding beyond the transcept indicating work on chancel) the upper part of the spire has been removed by Messrs Graham and Greig in preparation for replacing this section with a copper covered wooden structure. The Cathedral was completed in 1904. (Information from "Vision and Reality; Christchurch Cathedral in the Square," Colin Brown, Christchurch, 2000 and "A Dream of Spires," Ian Lochhead, Canterbury University Press, 1999, page 153.) Preparation for erecting the scaffolding was reported in the Christchurch Star 15 January 1902. The cross was replaced on the top of the new copper covered wooden section of the spire on 29 June 1903. Source of descriptive information - Notes on file print. Source of title - Title supplied by Library Quantity: 1 b&w original negative(s). Physical Description: Glass negative
Graffiti on a wooden wall depicts a child pointing at a site across the street and reads "I remember when the Kazbah was over there." The photographer comments, "A local street artist has commemorated Christchurch's deadliest earthquake. The anniversary is tomorrow. Where the photograph was taken was the site of the Ozone Hotel, which has now gone as well. For some of us who live and work in the East of Christchurch the earthquake was not what happened in the City as we were almost unaware of it. We had no water, toilets and most of all no electricity for weeks. For myself petrol was low and with tales of all the petrol stations on our side of town being damaged we could not take the chance of venturing out on severely damaged roads to find no petrol and the possibility of not getting home. We walked around and saw the damage that was local to us. TJ's Kazbah was one that stood out. A building that had a beauty with its round tower standing proud and always looked well kept - it was now collapsed. Its tower, which was once pointing towards the sky was laying on its side. It had kept its shape, but had a lightning shaped crack through it. The one thing that kept us feeling almost normal through the coming weeks was The Press our daily paper still being delivered even though the Press building and staff had suffered so badly themselves.
Recently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.
Christchurch was struck by a 6.3 magnitude earthquake on the 22 February 2011. The quake devastated the city, taking lives and causing widespread damage to the inner city and suburban homes. The central city lost over half its buildings and over 7000 homes were condemned throughout Christchurch. The loss of such a great number of homes has created the requirement for new housing to replace those that were lost. Many of which were located in the eastern, less affluent, suburbs. The response to the housing shortage is the planned creation of large scale subdivisions on the outskirts of the city. Whilst this provides the required housing it creates additional sprawl to a city that does not need it. The extension of Christchurch’s existing suburban sprawl puts pressure on roading and pushes residents further out of the city, creating a disconnection between them. Christchurch’s central city had a very small residential population prior to the earthquakes with very few options for dense inner city living. The proposed rebuild of the inner city calls for a new ‘dense, vibrant and diverse central hub’. Proposing the introduction of new residential units within the central city. However the placement of the low-rise housing in a key attribute of the rebuild, the eastern green ‘Frame’, diminishes its value as open green space. The proposed housing will also be restrictive in its target market and therefore the idea of a ‘vibrant’ inner city is difficult to achieve. This thesis acts as response to the planned rebuild of inner Christchurch. Proposing the creation of a model for inner city housing which provides an alternative option to the proposed housing and existing and ongoing suburban sprawl. The design options were explored through a design-led process were the options were critiqued and developed. The ‘final’ proposal is comprises of three tall towers, aptly named the Triple Towers, which condense the proposed low-rise housing from an 11000 square metre footprint to combined footprint of 1500 square metres. The result is an expansion of the publicly available green space along the proposed eastern frame of the city. The height of the project challenges the height restrictions and is provocative in its proposal and placement. The design explores the relationships between the occupants, the building, the ‘Frame’ and the central city. The project is discussed through an exploration of the architecture of Rem Koolhaas, Renzo Piano and Oscar Niemeyer. Rather than their architecture being taken as a direct influence on which the design is based the discussion revolves around how and why each piece of comparative architecture is relevant to the designs desired outcome.