A photograph of the earthquake damage to the Christchurch Chinese Methodist Church on Papanui Road. The bricks in the gable have crumbled, exposing the wooden structure underneath and crushing a van below. Police tape has been placed around the building as a cordon.
A photograph of temporary structures, created from scaffolding for CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014. It was created by architecture students in collaboration with local businesses, artists, performers and innovators.
A photograph of a temporary structure titled Synthesis, which was created by students from CPIT, in partnership with Dance Hall and Soda Bar. Synthesis was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a temporary structure, created from scaffolding for CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014. It was created by architecture students in collaboration with local businesses, artists, performers and innovators.
A photograph of a temporary structure, created from scaffolding for CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014. It was created by architecture students in collaboration with local businesses, artists, performers and innovators.
A photograph of the main structure of a large-scale puppet being lifted off a flatbed truck on Cashel Street. The puppet is titled The Knight, and was created by Free Theatre Christchurch for Canterbury Tales, which was the main event of FESTA 2013.
Damage to the front of the Cathedral of the Blessed Sacrament. The upper part of the corner structures have collapsed, and the cross on the roof is on a lean. A statue of the Virgin Mary can be seen in a window. The photographer comments, "A bike ride around the CBD. Catholic Cathedral, Barbadoes St".
A photograph of the earthquake damage to a building on Armagh Street. The walls of the building have crumbled and the bricks have spilt onto the footpath, exposing the wooden structure beneath. Police tape and road cones have been placed around the building as a cordon.
A photograph of a temporary structure, created from scaffolding for CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014. It was created by architecture students in collaboration with local businesses, artists, performers and innovators.
A photograph of the main structure of a large-scale puppet being lifted off a flatbed truck on Cashel Street. The puppet is titled The Knight, and was created by Free Theatre Christchurch for Canterbury Tales, which was the main event of FESTA 2013.
Admiral Thad Allen was the principal federal official in charge after Hurricane Katrina battered the US Gulf Coast in 2005, killing more than 1,700 people and displacing many more. Prime Minister John Key says the structure of the Canterbury Earthquake Recovery Authority was decided upon after an examination of the way other governments responded to disasters like Hurricane Katrina.
Admiral Thad Allen was the principal federal official in charge after Hurricane Katrina battered the US Gulf Coast in 2005, killing more than 1,700 people and displacing many more. Prime Minister John Key says the structure of the Canterbury Earthquake Recovery Authority was decided upon after an examination of the way other governments responded to disasters like Hurricane Katrina.
A photograph of a temporary, inflatable structure titled Upload, which was created by students from the University of Auckland, in partnership with Chirney Coffee. Upload was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of the main structure of a large-scale puppet titled The Knight. The puppet is in the Re:START mall car park on Cashel Street. The puppet was created by Free Theatre Christchurch for Canterbury Tales, which was the main event of FESTA 2013.
A photograph of the main structure of a large-scale puppet titled The Knight. The puppet is in the Re:START mall car park on Cashel Street. The puppet was created by Free Theatre Christchurch for Canterbury Tales, which was the main event of FESTA 2013.
A photograph of a temporary structure titled Equilibrium, which was created by students from the University of Auckland, in partnership with White Elephant Trust. Equilibrium was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of a temporary structure titled Equilibrium, which was created by students from the University of Auckland, in partnership with White Elephant Trust. Equilibrium was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of the earthquake damage to the Knox Church on the corner of Bealey Avenue and Victoria Street. The gable walls have crumbled, exposing the wooden structure inside. Wire fencing, road cones and cordon tape have been placed around the building as a cordon.
A photograph of the earthquake damage to the back of Wharetiki on Colombo Street. The chimney of the house has pulled away from the back wall and collapsed onto the roof below. A wooden structure built up against the house has also pulled away from the wall.
A photograph of a temporary structure titled CHCH2061, which was created by students from the University of Auckland, in partnership with DJ Jab. CHCH2061 was part of CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A PDF copy of The Star newspaper, published on Friday 10 August 2012.
Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.
The magnitude Mw 6.2 earthquake of February 22nd 2011 that struck beneath the city of Christchurch, New Zealand, caused widespread damage and was particularly destructive to the Central Business District (CBD). The shaking caused major damage, including collapses of structures, and initiated ground failure in the form of soil liquefaction and consequent effects such as sand boils, surface flooding, large differential settlements of buildings and lateral spreading of ground towards rivers were observed. A research project underway at the University of Canterbury to characterise the engineering behaviour of the soils in the region was influenced by this event to focus on the performance of the highly variable ground conditions in the CBD. This paper outlines the methodology of this research to characterise the key soil horizons that underlie the CBD that influenced the performance of important structures during the recent earthquakes, and will influence the performance of the rebuilt city centre under future events. The methodology follows post-earthquake reconnaissance in the central city, a desk study on ground conditions, site selection, mobilisation of a post-earthquake ground investigation incorporating the cone penetration test (CPT), borehole drilling, shear wave velocity profiling and Gel-push sampling followed by a programme of laboratory testing including monotonic and cyclic testing of the soils obtained in the investigation. The research is timely and aims to inform the impending rebuild, with appropriate information on the soils response to dynamic loading, and the influence this has on the performance of structures with various foundation forms.
Live monitoring data and simple dynamic reduced-order models of the Christchurch Women’s Hospital (CWH) help explain the performance of the base isolation (BI) system of the hospital during the series of Canterbury earthquakes in 2011-2012. A Park-Wen-Ang hysteresis model is employed to simulate the performance of the BI system and results are compared to measured data recorded above the isolation layer and on the 6th story. Simplified single, two and three degree of freedom models (SDOF, 2DOF and 3DOF) show that the CWH structure did not behave as an isolated but as a fixed-base structure. Comparisons of accelerations and deflections between simulated and monitored data show a good match for isolation stiffness values of approximately two times of the value documented in the design specification and test protocol. Furthermore, an analysis of purely measured data revealed very little to no relative motion across the isolators for large events of moment magnitude scale (Mw) 5.8 and 6.0 that occurred within 3 hours of each other on December 23, 2011. One of the major findings is that the BI system during the seismic events on December 23, 2011 did not yield and that the superstructure performed as a fixed-base building, indicating a need to reevaluate the analysis, design and implementation of these structures.
The 2010-2011 Christchurch earthquakes generated damage in several Reinforced Concrete (RC) buildings, which had RC walls as the principal resistant element against earthquake demand. Despite the agreement between structural engineers and researchers in an overall successfully performance there was a lack of knowledge about the behaviour of the damaged structures, and even deeper about a repaired structure, which triggers arguments between different parties that remains up to these days. Then, it is necessary to understand the capacity of the buildings after the earthquake and see how simple repairs techniques improve the building performance. This study will assess the residual capacity of ductile slender RC walls according to current standards in New Zealand, NZS 3101.1 2006 A3. First, a Repaired RC walls Database is created trying to gather previous studies and to evaluate them with existing international guidelines. Then, an archetype building is designed, and the wall is extracted and scaled. Four half-scale walls were designed and will be constructed and tested at the Structures Testing Laboratory at The University of Auckland. The overall dimensions are 3 [m] height, 2 [m] length and 0.175 [m] thick. All four walls will be identical, with differences in the loading protocol and the presence or absence of a repair technique. Results are going to be useful to assess the residual capacity of a damaged wall compare to the original behaviour and also the repaired capacity of walls with simpler repair techniques. The expected behaviour is focussed on big changes in stiffness, more evident than in previously tested RC beams found in the literature.
Recent major earthquakes such as Northridge 1994 and Izmit Kocaeli 1999 highlighted the poor performance of existing buildings constructed prior to the early 1970’s. Low lateral seismic design coefficients and the adopted “working stress design” methodology (essentially an elastic design) lacked any inelastic design considerations, thus leading to inadequate detailing. Insufficient development lengths, lapping within potential plastic hinge regions, lack, or total absence of joint transverse reinforcement, and the use of plain round reinforcement and hooked end anchorages were common throughout the structure. The behaviour is generally dominated by brittle local failure mechanisms (e.g. joint or element shear failures) as well as possible soft-storey mechanisms at a global level. Amongst several possible retrofit interventions, a typical solution is to provide the structure with additional structural walls i.e. external buttressing or column in-fills. Extensive developments on precast, post-tensioned, dissipative systems have shown promise for the use of rocking wall systems to retrofit existing poorly detailed frame structures. In this contribution, the feasibility of such a retrofit intervention is investigated. A displacement-based retrofit procedure is developed and proposed, based on targeting pre-defined performance criteria, such as joint shear and/or column curvature deformation limits. A design example, using the proposed retrofit strategy on a prototype frame is presented. A brief overview on experimental work ongoing at the University of Canterbury investigating the dynamic response of advanced rocking walls for retrofit purposes will be provided.
The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.
A photograph of a temporary, inflatable structure, titled Upload, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Upload was created by students from the University of Auckland, in partnership with Chirney Coffee.
A photograph of a temporary, inflatable structure, titled Upload, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Upload was created by students from the University of Auckland, in partnership with Chirney Coffee.
A photograph of a temporary structure titled GlowCity being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. GlowCity was created by students from Unitec, in partnership with Games Hall street games.