The Mushroom Building in the College of Engineering being demolished.
The Siemen Building in the College of Engineering being demolished.
The Mushroom Building in the College of Engineering being demolished.
The Mushroom Building in the College of Engineering being demolished.
Base isolation is arguably the most reliable method for providing enhanced protection of buildings against earthquake-induced actions, by virtue of a physical separation between the structure and the ground through elements/devices with controlled force capacity, significant lateral deformation capacity and (often) enhanced energy dissipation. Such a design solution has shown its effectiveness in protecting both structural and non-structural components, hence preserving their functionality even in the aftermath of a major seismic event. Despite lead rubber bearings being invented in New Zealand almost forty years ago, the Christchurch Women's hospital was the only isolated building in Christchurch when the Canterbury earthquake sequence struck in 2010/11. Furthermore, a reference code for designing base-isolated buildings in New Zealand is still missing. The absence of a design standard or at least of a consensus on design guidelines is a potential source for a lack of uniformity in terms of performance criteria and compliance design approaches. It may also limit more widespread use of the technology in New Zealand. The present paper provides an overview of the major international codes (American, Japanese and European) for the design of base-isolated buildings. The design performance requirements, the analysis procedures, the design review process and approval/quality control of devices outlined in each code are discussed and their respective pros and cons are compared through a design application on a benchmark building in New Zealand. The results gathered from this comparison are intended to set the basis for the development of guidelines specific for the New Zealand environment.
The Royal Commission into the Canterbury earthquakes has been told illegal building techniques are being used in the Christchurch rebuild because the engineering profession is in crisis.
Object Overview of 'Timaru District Engineering Lifelines Project: Earthquake Hazard Assessment (Yetton & McCahon, 2001).'
Object Overview of 'Hurunui District Engineering Lifelines Project: Natural Hazard Assessment (Yetton et al, 2000).'
The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.
A lack of building inspections and the engineers to carry them out has come under further scrutiny at the Royal Commission of inquiry into the Canterbury earthquakes.
Historical images of the Engineering School,taken from above circa 1962.
The service will provide access to engineering, legal and wellbeing support.
Minister Stephen Joyce surveys the damage in the College of Engineering.
Students return to work in the Engineering and Physical Sciences Library.
Students return to work in the Engineering and Physical Sciences Library.
Students return to work in the Engineering and Physical Sciences Library.
Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building non-skeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.
This report examines and compares case studies of labour market policy responses in APEC economies to natural disasters. It first reviews the policies and practice within APEC economies and internationally in managing the labour market effects of natural disasters. By using comparative case studies, the report then compares recent disaster events in the Asia-Pacific region, including: - the June 2013 Southern Alberta floods in Canada; - the 2010 and 2011 Queensland floods in Australia; - the 2010 and 2011 Canterbury earthquakes in New Zealand; - the 2011 Great East Japan Earthquake and Tsunami in Japan; and - the 2008 Wenchuan earthquake in China.
The 22 February 2011, Mw6.2 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing an estimated 181 fatalities and severely damaging thousands of residential and commercial buildings. This paper presents a summary of some of the observations made by the NSF-sponsored GEER Team regarding the geotechnical/geologic aspects of this earthquake. The Team focused on documenting the occurrence and severity of liquefaction and lateral spreading, performance of building and bridge foundations, buried pipelines and levees, and significant rockfalls and landslides. Liquefaction was pervasive and caused extensive damage to residential properties, water and wastewater networks, high-rise buildings, and bridges. Entire neighborhoods subsided, resulting in flooding that caused further damage. Additionally, liquefaction and lateral spreading resulted in damage to bridges and to stretches of levees along the Waimakariri and Kaiapoi Rivers. Rockfalls and landslides in the Port Hills damaged several homes and caused several fatalities.
The 2010 Darfield and 2011 Christchurch Earthquakes triggered extensive liquefaction-induced lateral spreading proximate to streams and rivers in the Christchurch area, causing significant damage to structures and lifelines. A case study in central Christchurch is presented and compares field observations with predicted displacements from the widely adopted empirical model of Youd et al. (2002). Cone penetration testing (CPT), with measured soil gradation indices (fines content and median grain size) on typical fluvial deposits along the Avon River were used to determine the required geotechnical parameters for the model input. The method presented attempts to enable the adoption of the extensive post-quake CPT test records in place of the lower quality and less available Standard Penetration Test (SPT) data required by the original Youd model. The results indicate some agreement between the Youd model predictions and the field observations, while the majority of computed displacements error on the side of over-prediction by more than a factor of two. A sensitivity analysis was performed with respect to the uncertainties used as model input, illustrating the model’s high sensitivity to the input parameters, with median grain size and fines content among the most influential, and suggesting that the use of CPT data to quantify these parameters may lead to variable results.
A structural engineer has told the Canterbury Earthquakes Royal Commission that illegal building techniques are being used in the Christchurch rebuild because the engineering profession is in crisis.
Interview with Canterbury Earthquakes Geospatial Reserach Fellow, Matthew Hughes. This interview was conducted by Emma Kelland as part of Deirdre Hart's Coastal and River Earthquake Research project.
Interview with Coastal Procces Geomophologist, R.M. Kirk. This interview was conducted by Emma Kelland as part of Deirdre Hart's Coastal and River Earthquake Research project.
An interview with Coastal Resources Scientist, Justin Cope, and Natual Hazard Analyst, Marion Irwin. This interview was conducted by Emma Kelland as part of Deirdre Hart's Coastal and River Earthquake Research project .
Interview with Surface Water Planner, Graham Harrington. This interview was conducted by Emma Kelland as part of Deirdre Hart's Coastal and River Earthquake Research project.
A video of a presentation by Dr Rob Buxton of GNS Science on "Modelling interdependencies of critical infrastructure". The presentation was delivered at the learning forum on Interdependencies of Lifeline Systems as part of the University of Canterbury's Lifeline Week.
A video of a presentation by Associate Professor Leonardo Duenas-Osorio of Rice University in Texas on "Learning and planning collaboration on 'Inderdependencies of Lifeline Systems' workshop". The presentation was delivered at the Learning from Lifeline Week and Planning Collaborations forum as part of the University of Canterbury's Lifeline Week.
A video of a presentation by Associate Professor Leonardo Duenas-Osorio of Rice University in Texas on "On-going and planned activities of the TCLEE Lifeline Systems Interdependence Committee". The presentation was delivered at the learning forum on Interdependencies of Lifeline Systems as part of the University of Canterbury's Lifeline Week.
A video of a presentation by Dr Craig Davis of the Los Angeles Department of Water and Power on "Learning and planning collaboration on 'Earthquake-Flood Multi-Hazard Impact on Lifelines' and 'Resilience Measures and Strategies'". The presentation was delivered at the Learning from Lifeline Week and Planning Collaborations forum as part of the University of Canterbury's Lifeline Week.
A video of a presentation by Tony Fenwick on "Interdependency issues and on the role of prepareness and awareness and reducing them". The presentation was delivered at the learning forum on Interdependencies of Lifeline Systems as part of the University of Canterbury's Lifeline Week.