Search

found 871 results

Research papers, University of Canterbury Library

A linear and non-linear model are developed to analyze the structural impact and response of two single degree of freedom structures, representing adjacent buildings or bridge sections. Different impact coefficients of restitution, normalized distances between structures and a range of different structural periods are considered. The probability of impact and the displacement changes that can result from these collisions are computed. The likelihood of an increase in displacement is quantified in a probabilistic sense. A full matrix of response simulations are performed to individually investigate and delineate the effects of inter-structure gap-ratio, period ratios, structural non-linearity and impact elasticity. Column inelasticity is incorporated through the use of a Ramberg-Osgood type hysteresis rule. The minimum normalized distance, or gap-ratio, required between two structures to ensure that the likelihood of increased displacement of more than 10% for either structure for 90% of the given earthquake ground motions is assessed as one of many possible design risk bounds. Increased gap ratio, defined as a percentage of spectral displacement, is shown to reduce the likelihood of impact, as well as close structural periods. Larger differences in the relative periods of the two structures were seen to significantly increase the likelihood of impact. Inclusion of column inelasticity and higher plasticity of impact reduce displacement increases from impact and thus possible further damage to the structures. Such information can be used as a guideline to manage undesirable effects of impact in design - a factor that has been observed to be very important during the recent Canterbury, New Zealand Earthquakes.

Research papers, The University of Auckland Library

Following a damaging earthquake, the immediate emergency response is focused on individual collapsed buildings or other "hotspots" rather than the overall state of damage. This lack of attention to the global damage condition of the affected region can lead to the reporting of misinformation and generate confusion, causing difficulties when attempting to determine the level of postdisaster resources required. A pre-planned building damage survey based on the transect method is recommended as a simple tool to generate an estimate of the overall level of building damage in a city or region. A methodology for such a transect survey is suggested, and an example of a similar survey conducted in Christchurch, New Zealand, following the 22 February 2011 earthquake is presented. The transect was found to give suitably accurate estimates of building damage at a time when information was keenly sought by government authorities and the general public. VoR - Version of Record

Research papers, University of Canterbury Library

The focus of the study presented herein is an assessment of the relative efficacy of recent Cone Penetration Test (CPT) and small strain shear wave velocity (Vs) based variants of the simplified procedure. Towards this end Receiver Operating Characteristic (ROC) analyses were performed on the CPT- and Vs-based procedures using the field case history databases from which the respective procedures were developed. The ROC analyses show that Factors of Safety (FS) against liquefaction computed using the most recent Vs-based simplified procedure is better able to separate the “liquefaction” from the “no liquefaction” case histories in the Vs liquefaction database than the CPT-based procedure is able to separate the “liquefaction” from the “no liquefaction” case histories in the CPT liquefaction database. However, this finding somewhat contradicts the assessed predictive capabilities of the CPT- and Vs-based procedures as quantified using select, high quality liquefaction case histories from the 20102011 Canterbury, New Zealand, Earthquake Sequence (CES), wherein the CPT-based procedure was found to yield more accurate predictions. The dichotomy of these findings may result from the fact that different liquefaction field case history databases were used in the respective ROC analyses for Vs and CPT, while the same case histories were used to evaluate both the CPT- and Vs-based procedures.

Research papers, University of Canterbury Library

Timber-based hybrid structures provide a prospective solution for utilizing environmentally friendly timber material in the construction of mid-rise or high-rise structures. This study mainly focuses on structural damage evaluation for a type of timber-steel hybrid structures, which incorporate prefabricated light wood frame shear walls into steel moment-resisting frames (SMRFs). The structural damage of such a hybrid structure was evaluated through shake table tests on a four-story large-scale timber-steel hybrid structure. Four ground motion records (i.e., Wenchuan earthquake, Canterbury earthquake, El-Centro earthquake, and Kobe earthquake) were chosen for the tests, with the consideration of three different probability levels (i.e., minor, moderate and major earthquakes) for each record. During the shake table tests, the hybrid structure performed quite well with visual damage only to wood shear walls. No visual damage in SMRF and the frame-to-wall connections was observed. The correlation of visual damage to seismic intensity, modal-based damage index and inter-story drift was discussed. The reported work provided a basis of knowledge for performance-based seismic design (PBSD) for such timber-based hybrid structures.

Research papers, University of Canterbury Library

Base isolation is arguably the most reliable method for providing enhanced protection of buildings against earthquake-induced actions, by virtue of a physical separation between the structure and the ground through elements/devices with controlled force capacity, significant lateral deformation capacity and (often) enhanced energy dissipation. Such a design solution has shown its effectiveness in protecting both structural and non-structural components, hence preserving their functionality even in the aftermath of a major seismic event. Despite lead rubber bearings being invented in New Zealand almost forty years ago, the Christchurch Women's hospital was the only isolated building in Christchurch when the Canterbury earthquake sequence struck in 2010/11. Furthermore, a reference code for designing base-isolated buildings in New Zealand is still missing. The absence of a design standard or at least of a consensus on design guidelines is a potential source for a lack of uniformity in terms of performance criteria and compliance design approaches. It may also limit more widespread use of the technology in New Zealand. The present paper provides an overview of the major international codes (American, Japanese and European) for the design of base-isolated buildings. The design performance requirements, the analysis procedures, the design review process and approval/quality control of devices outlined in each code are discussed and their respective pros and cons are compared through a design application on a benchmark building in New Zealand. The results gathered from this comparison are intended to set the basis for the development of guidelines specific for the New Zealand environment.