Search

found 2562 results

Images, eqnz.chch.2010

20131228_6797_1D3-58 The old Odeon Theatre The back of the old Odeon movie theatre, that was for about 15-20 years a New Life Christian Centre. This is earthquake damage, although the roof was lifted off in 2011. I don't know whether this is a building that they want to save or still awaiting demolition. The smaller building to the immediate...

Videos, UC QuakeStudies

A video of an interview with Mayumi Asakawa, a Japanese student from Kanagawa prefecture who was in Christchurch during the 22 February 2011 earthquake. Asakawa returned to Christchurch to ring the Peace Bell in the Botanic Gardens during the Festival of Flowers commemorative ceremony.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Prime Minister John Key, right, visited Christchurch after its 7.1 magnitude earthquake at 04:35 Saturday morning. Mayor Bob Parker, at front left, took him on a tour of the city which was punctuated by a fire breaking out in a building on Worcester Street. The tour party watches the fire".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Prime Minister John Key, right, visited Christchurch after its 7.1 magnitude earthquake at 04:35 Saturday morning. Mayor Bob Parker, at front left, took him on a tour of the city which was punctuated by a fire breaking out in a building on Worcester Street. The tour party watches the fire".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly before 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Prime Minister John Key, centre, visited Christchurch after its 7.1 magnitude earthquake at 04:35 Saturday morning. Mayor Bob Parker took him on a tour of the city which was punctuated by a fire breaking out in a building on Worcester Street. MP John Carter, and Key look at the damage".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".

Images, UC QuakeStudies

A digitally manipulated image of the Gap Filler Monopoly board square on Manchester Street. The photographer comments, "On the site of a demolished earthquake damaged building in Christchurch, New Zealand is a Monopoly game square for giants. The Gap Filler Project makes the bare land where once a building once stood into something both interesting and unique and this time they created a massive Monopoly board square. In the game of Monopoly you move your player with a dog, shoe or maybe the hat, but as the most common thing in the City are diggers they have the placed one on the square. There are also two houses on Manchester Street, which is priced at $240".

Videos, UC QuakeStudies

A video of a tour of the Christchurch central city Red Zone. The video includes footage of the site of the Brannigans Building on the corner of Oxford Terrace and Gloucester Street, the inside of the central library, Gloucester Street, Manchester Street, High Street, Poplar Lane, and Hereford Street.

Research papers, University of Canterbury Library

Christchurch Ōtautahi, New Zealand, is a city of myriad waterways and springs. Māori, the indigenous people of New Zealand, have water quality at the core of their cultural values. The city’s rivers include the Avon/Ōtākaro, central to the city centre’s aesthetic appeal since early settlement, and the Heathcote/Ōpāwaho. Both have been degraded with increasing urbanisation. The destructive earthquake sequence that occurred during 2010/11 presented an opportunity to rebuild significant areas of the city. Public consultation identified enthusiasm to rebuild a sustainable city. A sustainable water sensitive city is one where development is constructed with the water environment in mind. Water sensitive urban design applies at all scales and is a holistic concept. In Christchurch larger-scale multi-value stormwater management solutions were incorporated into rapidly developed greenfield sites on the city’s outskirts and in satellite towns, as they had been pre-earthquake. Individual properties on greenfield sites and within the city, however, continued to be constructed without water sensitive features such as rainwater tanks or living roofs. This research uses semi-structured interviews, policy analysis, and findings from local and international studies to investigate the benefits of building-scale WSUD and the barriers that have resulted in their absence. Although several inter-related barriers became apparent, cost, commonly cited as a barrier to sustainable development in general, was strongly represented. However, it is argued that the issue is one of mindset rather than cost. Solutions are proposed, based on international and national experience, that will demonstrate the benefits of adopting water sensitive urban design principles including at the building scale, and thereby build public and political support. The research is timely - there is still much development to occur, and increasing pressures from urban densification, population growth and climate change to mitigate.

Images, UC QuakeStudies

A digger demolishing the Ozone Dressing Sheds building. The photographer comments, "This is the end of the Ozone Dressing Sheds built in 1914. The two storey Ozone Cafe, which was a hotel, will be given it's coup de grace on Friday. They were gutted in a spectacular fire in 1922, but were unable to be saved after the Christchurch earthquake on 22 February 2011".

Research papers, University of Canterbury Library

Surface rupture of the previously unrecognised Greendale Fault extended west-east for ~30 km across alluvial plains west of Christchurch, New Zealand, during the Mw 7.1 Darfield (Canterbury) earthquake of September 2010. Surface rupture displacement was predominantly dextral strike-slip, averaging ~2.5 m, with maxima of ~5 m. Vertical displacement was generally less than 0.75 m. The surface rupture deformation zone ranged in width from ~30 to 300 m, and comprised discrete shears, localised bulges and, primarily, horizontal dextral flexure. About a dozen buildings, mainly single-storey houses and farm sheds, were affected by surface rupture, but none collapsed, largely because most of the buildings were relatively flexible and resilient timber-framed structures and also because deformation was distributed over a relatively wide zone. There were, however, notable differences in the respective performances of the buildings. Houses with only lightly-reinforced concrete slab foundations suffered moderate to severe structural and non-structural damage. Three other buildings performed more favourably: one had a robust concrete slab foundation, another had a shallow-seated pile foundation that isolated ground deformation from the superstructure, and the third had a structural system that enabled the house to tilt and rotate as a rigid body. Roads, power lines, underground pipes, and fences were also deformed by surface fault rupture and suffered damage commensurate with the type of feature, its orientation to the fault, and the amount, sense and width of surface rupture deformation.

Images, eqnz.chch.2010

When I lived in Christchurch back in 2004-2005, this was a building I went past on the bus every day to get to and from work in the city. After the big quake on 04/09/10 (7.1 magnitude), its been seriously damaged. As have many more of the shops in this area. Thankfully no lives were lost in the quake, and I'm glad I wasnt there to feel it eith...

Research papers, University of Canterbury Library

This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.

Audio, Radio New Zealand

The building industry is celebrating the best in home construction with the House of the Year awards tomorrow night. Registered Master Builders chief executive David Kelly says the finalists include designs that have taken lessons from the Christchurch earthquakes.

Images, UC QuakeStudies

A large crack where the foundation of a building has moved away from the adjoining carpark. The photographer comments, "The gap between Robbies restaurant and bar in New Brighton and the car park after the Christchurch Earthquake".

Research papers, University of Canterbury Library

On Tuesday 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, New Zealand’s second largest city. The ‘earthquake’ was in fact an aftershock to an earlier 7.1 magnitude earthquake that had occurred on Saturday 4 September 2010. There were a number of key differences between the two events that meant they had dramatically different results for Christchurch and its inhabitants. The 22 February 2011 event resulted in one of New Zealand’s worst natural disasters on record, with 185 fatalities occurring and hundreds more being injured. In addition, a large number of buildings either collapsed or were damaged to the point where they needed to be totally demolished. Since the initial earthquake in September 2010, a large amount of building-related research has been initiated in New Zealand to investigate the impact of the series of seismic events – the major focus of these research projects has been on seismic, structural and geotechnical engineering matters. One project, however, conducted jointly by the University of Canterbury, the Fire Protection Association of New Zealand and BRANZ, has focused on the performance of fire protection systems in the earthquakes and the effectiveness of the systems in the event of post-earthquake fires occurring. Fortunately, very few fires actually broke out following the series of earthquake events in Christchurch, but fire after earthquakes still has significant implications for the built environment in New Zealand, and the collaborative research has provided some invaluable insight into the potential threat posed by post-earthquake fires in buildings. As well as summarising the damage caused to fire protection systems, this paper discusses the flow-on effect for designing structures to withstand post-earthquake fires. One of the underlying issues that will be explored is the existing regulatory framework in New Zealand whereby structural earthquake design and structural design for fire are treated as discrete design scenarios.

Research papers, University of Canterbury Library

In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.

Images, Alexander Turnbull Library

Text at the top of the cartoon reads 'NZ city strengthening?' A whole city enclosed in a glass dome and balanced on huge springs intended to make it earthquake resistant rocks as another aftershock hits. Context - Two earthquakes and hundreds of aftershocks have hit Christchurch, the first on 4 September 2010 and a second more devastating one on 22 February 2011. There has been great emphasis on making heritage buildings that are rebuilt and all new buildings earthquake resistant. The example in the cartoon is perhaps a Springs-with-damper base isolator. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

The cartoon shows a daffodil blooming in an earthquake fissure with the wrecked buildings of Christchurch in the background. Context: September 4th is the anniversary of the first quake. Many people in Christchurch are still living in houses that may yet be red stickered (condemned) and many city buildings are still out of bounds, either condemned to destruction or rebuilt after the earthquakes of September 4th 2010 and February 22nd and June 13th 2011. But the return of spring maybe brings a sense of encouragement and hope. Title provided by librarian Quantity: 1 digital cartoon(s).