Search

found 2102 results

Images, UC QuakeStudies

A photograph captioned by BeckerFraserPhotos, "The demolition site of the Press building and Warners Hotel in Cathedral Square. The site has now been filled and compressed so that it provides a much pleasanter environment. From here, there is now a marvellous view of the Heritage Apartments building, which allows us a wider perspective of the building than was possible before".

Images, UC QuakeStudies

An aerial photograph of Hereford Street and Cathedral Square. The photograph has been captioned by BeckerFraserPhotos, "Hereford Street running across the foreground of this photograph, with Cathedral Square above. The IBIS Hotel and the ANZ Bank are staying, while the BNZ is currently being soft-stripped. Christ Church Cathedral officially has a status of 'partial demolish'".

Images, eqnz.chch.2010

Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...

Images, UC QuakeStudies

An aerial photograph of High, Lichfield, Manchester, and Tuam Streets. The photographs has been captioned by BeckerFraserPhotos, "High Street can be seen running from the bottom left to the top right of the photograph. The old Majestic Theatre is prominent halfway up on the left. The prominent streets are Lichfield Street (on the left) and Tuam Street (on the right)".

Images, UC QuakeStudies

An aerial photograph of the Christchurch central city. The photograph has been captioned by BeckerFraserPhotos, "High Street runs across this photograph in the top third from the old Majestic Theatre at the intersection of Manchester and Lichfield Streets to the intersection of Madras and St Asaph Street which is just beyond the edge of the photo".

Images, eqnz.chch.2010

Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...

Images, eqnz.chch.2010

Demolition work on Christchurch's "distinctive" former civic building and the Front Runner store. On a walk around Christchurch May 9, 2013 New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department s...

Videos, UC QuakeStudies

A video of Ladi6 and All Right? staff member Ciaran Fox "getting out and about" in Christchurch, talking to local street artist Jacob Yikes about his work and other street art popping up around the CBD. The interview was shot in front of one of Yikes' murals on Tuam Street. All Right? uploaded the video to YouTube on 21 April 2015 and posted a link to the video ton their Facebook Timeline on 28 April 2015 at 4:00pm.

Images, UC QuakeStudies

An aerial photograph captioned by BeckerFraserPhotos, "A view looking north-west over the central city towards Hagley Park. Hereford Street can be seen in the foreground, as well as Worcester Street running towards the the Christ Church Cathedral. The empty site of the Press Building and Warners hotel can also be seen".

Research papers, The University of Auckland Library

A dramatic consequence of the Christchurch, New Zealand, earthquakes of 2010 and 2011 was the widespread liquefaction in the city. Part of the central business district (CBD) was badly affected by liquefaction but elsewhere large volumes of ejecta were not evident for those parts of the CBD where the upper layers in the soil profile are sandy gravel and gravelly sand. The purpose of the paper is to investigate the effect of the gravel permeability on the rise and dissipation of excess pore water pressure during cyclic loading of a soil profile idealised from Christchurch data. The Cyclic1D software, which performs one-dimensional non-linear effective stress site response analysis, was used. Permeability values associated with gravel were found to suppress the cyclic accumulation of excess pore water pressure in gravel layers. Given that there has not been any systematic measurement of the in situ permeability of the gravels in Christchurch, the modelling in the paper suggests that likely values for the bulk permeability of the gravel layers are within the range suggested in the geotechnical literature. However, the work reported is of wider application than Christchurch and emphasises the controlling influence of permeability on the accumulation and dissipation of cyclic pore pressures. VoR - Version of Record

Research papers, The University of Auckland Library

Ingham and Biggs were in Christchurch during the M6.3, 22 February 2011 earthquake and Moon arrived the next day. They were enlisted by officials to provide rapid assessment of buildings within the Central Business District (CBD). In addition, they were asked to: 1) provide a rapid assessment of the numbers and types of buildings that had been damaged, and 2) identify indicator buildings that represent classes of structures that can be used to monitor changing conditions for each class following continuing aftershocks and subsequent damage. This paper explains how transect methodology was incorporated into the rapid damage assessment that was performed 48 hours after the earthquake. Approximately 300 buildings were assessed using exterior Level 1 reporting techniques. That data was used to draw conclusions on the condition of the entire CBD of approximately 4400 buildings. In the context of a disaster investigation, a transect involves traveling a selected path assessing the condition of the buildings and documenting the class of each building, and using the results in conjunction with prior knowledge relating to the overall population of buildings affected in the area of the study. Read More: http://ascelibrary.org/doi/abs/10.1061/9780784412640.033

Images, UC QuakeStudies

An aerial photograph of the Copthorne Hotel on Colombo Street. The photograph has been captioned by BeckerFraserPhotos, "When the PricewaterhouseCoopers building is demolished, the Copthorne Central Hotel will be alone on the block. Oxford on the Avon and Plunket House are also gone from Oxford Terrace, and on the other side of the river is the demolition site of the PGC building where 18 people died".

Images, UC QuakeStudies

An aerial photograph of the Christchurch central city. The photograph has been captioned by BeckerFraserPhotos, "The central city, with the Majestic Theatre in the centre of the photograph. Lichfield Street runs from bottom left diagonally up the photograph to the top right. The City Council building is prominent in the bottom left corner and Latimer Square in the top left corner".

Research papers, University of Canterbury Library

INTRODUCTION This project falls under the Flagship 3: Wellington Coordinated Project. It supports other projects within FP3 to create a holistic understanding of risks posed by collapsed buildings due to future earthquake/s and the secondary consequences of cordoning in the short, mid and long term. Cordoning of the Christchurch CBD for more than two years and its subsequent implications on people and businesses had a significant impact on the recovery of Christchurch. Learning from this and experiences from the Kaikōura earthquake (where cordons were also established around selected buildings, Figure 3) have highlighted the need to understand the effects of cordons and plan for it before an earthquake occurs

Videos, UC QuakeStudies

A video of Ladi6 and All Right? staff member Ciaran Fox "getting out and about", being shown around the Chart BeatBox Studio by Deanne Simmonds, CHART/BeatBox manager. BeatBox is located on the corner of St Asaph St and Madras St, and it has provided a studio space in the CBD for musicians and other creatives. BeatBox has also received support from government agencies and community organisations for providing an essential central city project in transitional Christchurch. All Right? uploaded the video to YouTube on 21 April 2015 and posted a link to the video on their Facebook Timeline on 4 May 2015 at 7:00pm.

Images, UC QuakeStudies

An aerial photograph captioned by BeckerFraserPhotos, "Victoria Square is at the centre of this picture with its green lawns and trees. The bare patch of earth in front s the demolition sites of the Allan McLean building, the Oxford on Avon, and Plunket House. The contract to demolish the Crowne Plaza Hotel has been let, while the fate of the Town Hall is still undecided. The Convention Centre is coming down. On the very bottom, slightly to the right is the Medlab building which is also to be demolished. In the bottom left corner is the PWC building which is also to be demolished".

Research papers, The University of Auckland Library

The 2011, 6.3 magnitude Christchurch earthquake in New Zealand caused considerable structural damage. It is believed that this event has now resulted in demolition of about 65-70% of the building stock in the Central Business District (CBD), significantly crippling economic activities in the city of Christchurch. A major concern raised from this event was adequacy of the current seismic design practice adopted for reinforced concrete walls due to their poor performance in modern buildings. The relatively short-duration earthquake motion implied that the observed wall damage occurred in a brittle manner despite adopting a ductile design philosophy. This paper presents the lessons learned from the observed wall damage in the context of current state of knowledge in the following areas: concentrating longitudinal reinforcement in wall end regions; determining wall thickness to prevent out-of-plane wall buckling; avoiding lap splices in plastic hinge zones; and quantifying minimum vertical reinforcement. http://www.2eceesistanbul.org/

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.

Research papers, The University of Auckland Library

Micro - electro - mechanical system (MEMS) based accelerometers are now frequently used in many different parts of our day - to - day lives. It is also increasingly being used for structural testing applications. Researchers have had res ervation of using these devices as they are relatively untested, but now with the wider adoption, it provides a much cheaper and more versatile tool for structural engineering researchers. A number of damaged buildings in the Christchurch Central Business District (CBD) were instrumented with a number of low - cost MEMS accelerometers after the major Christchurch earthquakes. The accelerometers captured extremely high quality building response data as the buildings experienced thousands of aftershocks. This d ata set was amongst one of only a handful of data set s available around the world which provides building response data subjected to real ground motion. Furthermore, due to technological advances, a much larger than usual number of accelerometers has been deployed making the data set one of the most comprehensive available. This data set is utilised to extract modal parameters of the buildings. This paper summarises the operating requirements and preference for using such accelerometers for experimental mod al analysis. The challenges for adapting MEMS based devices for successful modal parameters identification are also discussed.

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of several walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to NZS 3101. A database summarising of the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and an experimental setup has been developed to subject RC wall specimen to loading that is representative of a multi-storey building. Numerical modelling is being used to understand the observed performance of several case-study RC walls buildings in Christchurch. Of particular interest is the influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls.

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the unsatisfactory performance of several RC wall buildings during the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of RC walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to the New Zealand Concrete Structures Standard. A database summarising the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and initial numerical modeling and small-scale tests are presented in addition to details of planned experimental tests of RC walls. Numerical modelling is being used to understand the potential influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls. The results from finite element analysis of a severely damaged RC wall in Christchurch highlighted the effect that the floor diaphragms have on the distribution of shear stains in the wall.

Research papers, University of Canterbury Library

This paper presents the preliminary conclusions of the first stage of Wellington Case Study project (Regulating For Resilience in an Earthquake Vulnerable City) being undertaken by the Disaster Law Research Group at the University of Canterbury Law School. This research aims to map the current regulatory environment around improving the seismic resilience of the urban built environment. This work provides the basis for the second stage of the project which will map the regulatory tools onto the reality of the current building stock in Wellington. Using a socio-legal methodology, the current research examines the regulatory framework around seismic resilience for existing buildings in New Zealand, with a particularly focus on multi-storey in the Wellington CBD. The work focusses both on the operation and impact of the formal seismic regulatory tools open to public regulators (under the amended Building Act) as other non-seismic regulatory tools. As well as examining the formal regulatory frame, the work also provides an assessment of the interactions between other non-building acts (such as Health and Safety at Work Act 2015) on the requirements of seismic resilience. Other soft-law developments (particularly around informal building standards) are also examined. The final output of this work will presents this regulatory map in a clear and easily accessible manner and provide an assessment of the suitability of this at times confusing and patchy legal environment as Wellington moves towards becoming a resilient city. The final conclusion of this work will be used to specifically examine the ability of Wellington to make this transition under the current regulatory environment as phase two of the Wellington Case Study project.

Research papers, The University of Auckland Library

The Global Earthquake Model’s (GEM) Earthquake Consequences Database (GEMECD) aims to develop, for the first time, a standardised framework for collecting and collating geocoded consequence data induced by primary and secondary seismic hazards to different types of buildings, critical facilities, infrastructure and population, and relate this data to estimated ground motion intensity via the USGS ShakeMap Atlas. New Zealand is a partner of the GEMECD consortium and to-date has contributed with 7 events to the database, of which 4 are localised in the South Pacific area (Newcastle 1989; Luzon 1990; South of Java 2006 and Samoa Islands 2009) and 3 are NZ-specific events (Edgecumbe 1987; Darfield 2010 and Christchurch 2011). This contribution to GEMECD represented a unique opportunity for collating, comparing and reviewing existing damage datasets and harmonising them into a common, openly accessible and standardised database, from where the seismic performance of New Zealand buildings can be comparatively assessed. This paper firstly provides an overview of the GEMECD database structure, including taxonomies and guidelines to collect and report on earthquake-induced consequence data. Secondly, the paper presents a summary of the studies implemented for the 7 events, with particular focus on the Darfield (2010) and Christchurch (2011) earthquakes. Finally, examples of specific outcomes and potentials for NZ from using and processing GEMECD are presented, including: 1) the rationale for adopting the GEM taxonomy in NZ and any need for introducing NZ-specific attributes; 2) a complete overview of the building typological distribution in the Christchurch CBD prior to the Canterbury earthquakes and 3) some initial correlations between the level and extent of earthquake-induced physical damage to buildings, building safety/accessibility issues and the induced human casualties.