
Silt from liquefaction outside the Merivale Mall. Some sections of the street have been cordoned off.
Liquefaction and buckled tarmac on a residential street in North New Brighton. The photographer comments, "In the February 2011 earthquake in Christchurch the kerb at the end of my road was pushed from both ends. This caused it to move away from the grass verge and push itself under the tarmac. The tarmac would normally have been 3 inches below the top of the kerb. Between the kerb and the grass can be seen the colour of the liquefaction that spewed out from the ground. The tarmac in the area seemed to flow downhill".
A residential street in New Brighton. Liquefaction still lines the street, and lampposts are leaning in different directions. The photographer comments, "This is the New Brighton red zone, which is parallel to the Avon River. The area suffered serious liquefaction during the numerous earthquakes/aftershocks and the land is being bought by the government. Although the houses do not look too bad in the background they have suffered badly. On the day I took this picture the council had just hours before cut the grass, which made the area look less abandoned".
Photograph captioned by Fairfax, "The 800-strong student army helps residents of Rebecca Avenue, Burwood clean up several feet of liquefaction after Tuesday's massive earthquake. Pictures to accompany story by reporter Blair Ensor. Christchurch Earthquake aftermath - day four."
Photograph captioned by Fairfax, "The 800-strong student army helps residents of Rebecca Avenue, Burwood clean up several feet of liquefaction after Tuesday's massive earthquake. Pictures to accompany story by reporter Blair Ensor. Christchurch Earthquake aftermath - day four."
A map showing the extent of liquefaction after the 4 September 2010 and 22 February 2011 earthquakes.
Photograph captioned by Fairfax, "Christchurch Earthquake. Damage in Dallington. Cardboard sign on liquefaction silt pile reads 'Free'".
Photograph captioned by Fairfax, "Volunteers help clean up liquefaction on Acland Avenue. Robson Avenue resident Kelly Gearry".
A Mr Whippy van parked on a corner in a residential street where people are clearing liquefaction.
The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.
The objective of this study is to examine the influence of near-fault motions on liquefaction triggering in Christchurch and neighboring towns during the 2010-2011 Canterbury earthquake sequence (CES). The CES began with the 4 September 2010, Mw7.1 Darfield earthquake and included up to ten events that triggered liquefaction. However, most notably, widespread liquefaction was induced by the Darfield earthquake and the Mw6.2, 22 February 2011 Christchurch earthquake. Of particular relevance to this study is the forward directivity effects that were prevalent in the motions recorded during the Darfield earthquake, and to a much lesser extent, during the Christchurch earthquake. A 2D variant of the Richart-Newmark fatigue theory was used to compute the equivalent number of cycles (neq) for the ground motions, where volumetric strain was used as the damage metric. This study is unique because it considers the contribution and phasing of both the fault-normal and fault-parallel components of motion on neq and the magnitude scaling factor (MSF). It was found that when the fault-normal and fault-parallel motions were treated individually, the former yielded a lower neq than the latter. Additionally, when the combined effects of fault-normal and fault-parallel components were considered, it was found that the MSF were higher than those commonly used. This implies that motions containing near-fault effects are less demanding on the soil than motions that do not. This may be one of several factors that resulted in less severe liquefaction occurring during the Darfield earthquake than the Christchurch earthquake.
A small boy is being a real entrepreneur after the Christchurch earthquake of 22 February 2011 and has set up a road-side stall from which you can buy a bag of 'real leakyfakshun'. Behind him is a pile of liquefaction and a spade with which he can fill bags. Context - the Christchurch earthquake of 22 February has caused vastly more liquefaction than the original 4th September earthquake. The vibrations from the quake cause liquefaction which is where the soil loses strength and stiffness, and behaves more like a liquid than a solid - rather like wet sand. Colour and black and white versions available Quantity: 2 digital cartoon(s).
Photograph captioned by Fairfax, "Earthquake damage in central Christchurch after a 6.3 earthquake. Liquefaction in Sydenham Park".
A map showing the extent of liquefaction caused by the 4 September 2010 and 22 February 2011 earthquakes.
Photograph captioned by Fairfax, "Day after the earthquake that rocked Christchurch. Liquefaction in a backyard at Kairaki Beach".
Silt from liquefaction outside the Merivale Mall. A pile of carpet pieces sit in front of the mall.
When the 2010 and 2011 earthquakes created a city-wide outdoor research laboratory, UC Civil Engineering Professor Misko Cubrinovski gathered as much information as possible. This work has been recognised by the American Society of Civil Engineers (ASCE), which is presenting him with the 2019 Ralph B. Peck Award for "outstanding contributions to the geotechnical engineering profession through the publication of several insightful field case histories"
Misko Cubrinovski is interested how the ground and the structures on - and in - it behave during an earthquake.
A series of undrained cyclic direct simple shear (DSS) tests on specimens of sandy silty soils are used to evaluate the effects of fines content, fabric and layered structure on the liquefaction response of sandy soils containing non-plastic fines. Test soils originate from shallow deposits in Christchurch, New Zealand, where severe and damaging manifestations of liquefaction occurred during the 2010-2011 Canterbury earthquakes. A procedure for reconstituting specimens by water sedimentation is employed. This specimen preparation technique involves first pluviation of soil through a water column, and then application of gentle vibrations to the mould (tapping) to prepare specimens with different initial densities. This procedure is applied to prepare uniform specimens, and layered specimens with a silt layer atop a sand layer. Cyclic DSS tests are performed on water-sedimented specimens of two sands, a silt, and sand-silt mixtures with different fines contents. Through this testing program, effects of density, time of vibration during preparation, fines content, and layered structure on cyclic behaviour and liquefaction resistance are investigated. Additional information necessary to characterise soil behaviour is provided by particle size distribution analyses, index void ratio testing, and Scanning Electronic Microscope imaging. The results of cyclic DSS tests show that, for all tested soils, specimens vibrated for longer period of time have lower void ratios, higher relative density, and greater liquefaction resistance. One of the tested sands undergoes significant increase in relative density and liquefaction resistance following prolonged vibration. The other sand exhibits lower increase in relative density and in liquefaction resistance when vibrated for the same period of time. Liquefaction resistance of sand-silt mixtures prepared using this latter sand shows a correlation with relative density irrespective of fines content. In general, however, magnitudes of changes in liquefaction resistance for given variations in vibration time, relative density, or void ratio vary depending on soils under consideration. Characterization based on maximum and minimum void ratios indicates that tested soils develop different structures as fines are added to their respective host sands. These structures influence initial specimen density, strains during consolidation, cyclic liquefaction resistance, and undrained cyclic response of each soil. The different structures are the outcome of differences in particle size distributions, average particle sizes, and particle shapes of the two host sands and of the different relationships between these properties and those of the silt. Fines content alone does not provide an effective characterization of the effects of these factors. Monotonic DSS tests are also performed on specimens prepared by water sedimentation, and on specimens prepared by moist tamping, to identify the critical state lines of tested soils. These critical state lines provide the basis for an alternative interpretation of cyclic DSS tests results within the critical state framework. It is shown that test results imply general consistency between observed cyclic and monotonic DSS soil response. The effects of specimen layering are scrutinised by comparing DSS test results for uniform and layered specimens of the same soils. In this case, only a limited number of tests is performed, and the range of densities considered for the layered specimens is also limited. Caution is therefore required in interpretation of their results. The liquefaction resistance of layered specimens appears to be influenced by the bottom sand layer, irrespective of the global fines content of the specimen. The presence of a layered structure does not result in significant differences in terms of liquefaction response with respect to uniform sand specimens. Cyclic triaxial data for Christchurch sandy silty soils available from previous studies are used to comparatively examine the behaviour observed in the tests of this study. The cyclic DSS liquefaction resistance of water-sedimented specimens is consistent with cyclic triaxial tests on undisturbed specimens performed by other investigators. The two data sets result in similar liquefaction triggering relationships for these soils. However, stress-strain response characteristics for the two types of specimens are different, and undisturbed triaxial specimen exhibit a slower rate of increase in shear strains compared to water-sedimented DSS specimens. This could be due to the greater influence of fabric of the undisturbed specimens.
A block of apartments in the CBD that has been yellow-stickered. There is dried liquefaction on the driveway.
The Holiday Inn On Avon has been fenced off, and silt from liquefaction still remains on the surrounding area.
Damage to a block of flats, with silt from liquefaction around the footpath, and road cones blocking the driveway.
Damage to a block of flats, with silt from liquefaction around the footpath, and road cones blocking the driveway.
A pothole in a road surface, showing tyre marks where a vehicle has driven through the hole. The photographer comments, "After the earthquake in Christchurch in February 2011 burst underground pipes and liquefaction caused unseen hollows under the road surfaces. Occasionally after all the rest have been exposed by traffic someone would find 'discover' a new one".
A worker uses a large water-blasting pipe to clear blocked drains. The photographer comments, "These guys worked really hard late at night to remove the liquefaction blocking our drains, but did not pre-warn people. Our elderly neighbour's toilet was drenched in water".
Photograph captioned by Fairfax, "Part of the Kaiapoi stop bank earmarked to have underground damming to alleviate liquefaction in earthquakes".
Photograph captioned by Fairfax, "Part of the Kaiapoi stop bank earmarked to have underground damming to alleviate liquefaction in earthquakes".
Photograph captioned by Fairfax, "Part of the Kaiapoi stop bank earmarked to have underground damming to alleviate liquefaction in earthquakes".
Photograph captioned by Fairfax, "Halswell School Principal Bruce Topham looks at liquefaction on the school ground after the latest quake".
Photograph captioned by Fairfax, "Part of the Kaiapoi stop bank earmarked to have underground damming to alleviate liquefaction in earthquakes".