At the conclusion of the 2010 and 2011 Canterbury earthquakes more than 5100 homes had been deemed unsafe for habitation. The land and buildings of these were labelled “red zoned” and are too badly damaged for remediation. These homes have been demolished or are destined for demolition. To assist the red zone population to relocate, central government have offered to ‘buy out’ home owners at the Governmental Value (GV) that was last reviewed in 2007. While generous in the economic context at the time, the area affected was the lowest value land and housing in Christchurch and so there is a capital shortfall between the 2007 property value and the cost of relocating to more expensive properties. This shortfall is made worse by increasing present day values since the earthquakes. Red zone residents have had to relocate to the far North and Western extremities of Christchurch, and some chose to move even further to neighbouring towns or cities. The eastern areas and commercial centres close to the red zone are affected as well. They have lost critical mass which has negatively impacted businesses in the catchments of the Red Zone. This thesis aims to repopulate the suburbs most affected by the abandonment of the red zone houses. Because of the relative scarcity of sound building sites in the East and to introduce affordability to these houses, an alternative method of development is required than the existing low density suburban model. Smart medium density design will be tested as an affordable and appropriate means of living. Existing knowledge in this field will be reviewed, an analysis of what East Christchurch’s key characteristics are will occur, and an examination of built works and site investigations will also be conducted. The research finds that at housing densities of 40 units per hectare, the spatial, vehicle, aesthetic needs of East Christchurch can be accommodated. Centralising development is also found to offer better lifestyle choices than the isolated suburbs at the edges of Christchurch, to be more efficient using existing infrastructure, and to place less reliance on cars. Stronger communities are formed from the outset and for a full range of demographics. Eastern affordable housing options are realised and Christchurch’s ever expanding suburban tendencies are addressed. East Christchurch presently displays a gaping scar of devastated houses that ‘The New Eastside’ provides a bandage and a cure for. Displaced and dispossessed Christchurch residents can be re-housed within a new heart for East Christchurch.
TODD McCLAY to the Minister of Finance: What recent reports has he received on the Government’s financial position? Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his statement that “if you go and have a look at the tax cuts, they literally were neutral” and, if so, what is the projected net cost of the first four years of the 2010 tax package? DAVID SHEARER to the Prime Minister: Does he have confidence in all his Ministers? Dr PAUL HUTCHISON to the Associate Minister of Health: How will young New Zealanders receive better mental health services under the new Government package announced by the Prime Minister today? Hon DAVID PARKER to the Minister for Land Information: Has he or any other Minister this week sought further information on Shanghai Pengxin’s application for his approval to buy the Crafar farms, and if so, is it coincidence or purpose that this will further delay his decision on the application? NIKKI KAYE to the Minister of Education: What initiatives is she introducing to help schools tackle youth mental health? JULIE ANNE GENTER to the Minister of Transport: Has the Government reviewed its highway building programme in light of the warning in the briefing to the incoming Minister that there will be a $4.9 billion funding shortfall if oil prices remain high and economic growth remains low; if not, why not? CHARLES CHAUVEL to the Minister of Justice: Does she stand by all the answers she has given to questions asked of her to date? NICKY WAGNER to the Minister for Economic Development: What action has the Government taken to contribute to the recovery of high-tech businesses in Christchurch? Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: When will he approve a Recovery Plan for Christchurch’s CBD in light of the Christchurch City Council’s announcement that it will commence its Annual Plan processes next week? Rt Hon WINSTON PETERS to the Prime Minister: Does he have confidence in the Overseas Investment Office and his Ministers, Hon Jonathan Coleman and Hon Maurice Williamson over the issue of the latest Crafar farms deal; if so, why? CLARE CURRAN to the Prime Minister: What did he mean when he told the NZ Herald and other media last week that “We are comfortable with the current arrangements we have” with regards to Chinese telco Huawei’s involvement in our national broadband infrastructure, given that Australian Prime Minister Julia Gillard also said last week that “We’ve taken a decision in the national interest” to ban Huawei from even tendering for its broadband network? Questions to Members Hon DAVID PARKER to the Chairperson of the Finance and Expenditure Committee: Is it his intention to call the Treasury to appear before the committee to comment on the Report from the Controller and Auditor-General on The Treasury: Implementing and managing the Crown Retail Deposit Guarantee Scheme; if not, why not?
Between 2010 and 2011, Canterbury experienced a series of four large earthquake events with associated aftershocks which caused widespread damage to residential and commercial infrastructure. Fine grained and uncompacted alluvial soils, typical to the Canterbury outwash plains, were exposed to high peak ground acceleration (PGA) during these events. This rapid increase in PGA induced cyclic strain softening and liquefaction in the saturated, near surface alluvial soils. Extensive research into understanding the response of soils in Canterbury to dynamic loading has since occurred. The Earthquake Commission (EQC), the Ministry of Business and Employment (MBIE), and the Christchurch City Council (CCC) have quantified the potential hazards associated with future seismic events. Theses bodies have tested numerous ground improvement design methods, and subsequently are at the forefront of the Canterbury recovery and rebuild process. Deep Soil Mixing (DSM) has been proven as a viable ground improvement foundation method used to enhance in situ soils by increasing stiffness and positively altering in situ soil characteristics. However, current industry practice for confirming the effectiveness of the DSM method involves specific laboratory and absolute soil test methods associated with the mixed column element itself. Currently, the response of the soil around the columns to DSM installation is poorly understood. This research aims to understand and quantify the effects of DSM columns on near surface alluvial soils between the DSM columns though the implementation of standardised empirical soil test methods. These soil strength properties and ground improvement changes have been investigated using shear wave velocity (Vs), soil behaviour and density response methods. The results of the three different empirical tests indicated a consistent improvement within the ground around the DSM columns in sandier soils. By contrast, cohesive silty soils portrayed less of a consistent response to DSM, although still recorded increases. Generally, within the tests completed 50 mm from the column edge, the soil response indicated a deterioration to DSM. This is likely to be a result of the destruction of the soil fabric as the stress and strain of DSM is applied to the un‐mixed in situ soils. The results suggest that during the installation of DSM columns, a positive ground effect occurs in a similar way to other methods of ground improvement. However, further research, including additional testing following this empirical method, laboratory testing and finite 2D and 3D modelling, would be useful to quantify, in detail, how in situ soils respond and how practitioners should consider these test results in their designs. This thesis begins to evaluate how alluvial soils tend to respond to DSM. Conducting more testing on the research site, on other sites in Christchurch, and around the world, would provide a more complete data set to confirm the results of this research and enable further evaluation. Completing this additional research could help geotechnical DSM practitioners to use standardised empirical test methods to measure and confirm ground improvement rather than using existing test methods in future DSM projects. Further, demonstrating the effectiveness of empirical test methods in a DSM context is likely to enable more cost effective and efficient testing of DSM columns in future geotechnical projects.
Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.
To this extent, modern buildings generally demonstrated good resistance to collapse during the recent earthquakes in New Zealand. However, damage to non-structural elements (NSE) has been persistent during these events. NSEs include secondary systems or components attached to the floors, roofs, and walls of a building or industrial facility that are not explicitly designed to participate in the main vertical or lateral load-bearing mechanism of the structure. They play a major role in the operational and functional aspects of buildings and contribute a major portion of the building’s overall cost. Therefore, they are expected to accommodate the effects of seismic actions such as drifts and accelerations. Typical examples of NSEs include internal non-loadbearing partitions, suspended ceilings, sprinkler piping systems, architectural claddings, building contents, mechanical/electrical equipment, and furnishings. The main focus of this thesis is the drift sensitive NSEs: precast concrete cladding panels and internal partition walls. Even though most precast concrete cladding panels performed well from a life-safety point of view during recent earthquakes in NZ, some collapsed panels posed a significant threat to life safety. It is, therefore, important that the design and detailing of the panel-to-structure connections ensure that their strength and displacement capacity are adequate to meet the corresponding seismic demands, at least during design level earthquakes. In contrast, the partition wall is likely to get damaged and lose serviceability at a low inter-story drift unless designed to accommodate the relative deformations between them and the structure. Partition walls suffered wide-ranging damage such as screw failures, diagonal cracking, detachments to the gypsum linings, and anchorage failures during the 2011 Canterbury Earthquake Sequence in NZ. Therefore, the thesis is divided into two parts. Part I of the thesis focuses on developing novel low-damage precast concrete cladding panel connections, i.e. “rocking” connection details comprising vertically slotted steel embeds and weld plates. The low-damage seismic performance of novel “rocking” connection details is verified through experimental tests comprising uni-directional, bi-directional, and multi-storey scaled quasi-static cyclic tests. Comparison with the seismic performance of traditional panel connections reported in the literature demonstrated the system’s significantly improved seismic resilience. Furthermore, the finite element models of panel connections and sealants are developed in ABAQUS. The force-drift responses of the “rocking” panel system modelled in SAP2000 is compared with the experimental results to evaluate their accuracy and validity. Part II of the thesis focuses on a) understanding the seismic performance of traditional rigid timber-framed partition wall, b) development and verification of low-damage connections (i.e. “rocking” connection details comprising of dual-slot tracks), and c) seismic evaluation of partition walls with a novel “bracketed and slotted” connections (comprising of innovative fastener and plastic bracket named Flexibracket) under uni-directional and bidirectional quasi-static cyclic loadings. Moreover, parametric investigation of the partition walls was conducted through several experimental tests to understand better the pros and cons of the rocking connection details. The experimental results have confirmed that the implementation of the proposed low damage solutions of precast cladding panels and internal partition walls can significantly reduce their damage in a building.
The demand for a new approach to safeguarding New Zealand’s endangered historic buildings was identified as a result of the recent increase in building code and strengthening requirements following the Christchurch earthquakes of 2010-2011. The Wellington City Council identified 266 heritage buildings in the city that must be either strengthened or demolished to address these increased requirements. This thesis explores this threat as an opportunity for researching how contemporary design interventions can be challenged to both strengthen and become active participants in the ongoing history of New Zealand’s potentially endangered historic buildings. This thesis challenges the current approach of completely ‘restoring’ 19th-20th century historic buildings in New Zealand, to develop techniques that structurally reinforce historic buildings while inviting the progressive weathering of a building to remain as a testament to its history. This thesis proposes a structural intervention that is responsive to the progressive history of historic buildings, simultaneously introducing a contemporary structural intervention that both participates in and compliments the progressive historic transformations of the vehicle. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the life of a building, while fully restored buildings only enable visitors to witness the original form of the building. This thesis proposes a model for contemporary intervention within historic buildings that draws a design intervention from seismic strengthening.The notion of layering is explored as a design approach to incorporate the contemporary with the historic as an additional layer of exposed on-going history, thereby further exposing the layers of history evident within New Zealand’s historic buildings. This thesis combines layering theories of architects Louis Kahn and Carlo Scarpa with related theories of installation artist Mary Miss. The theoretical imperatives of Scarpa and Kahn are explored as a tool of engagement for the junction between the contemporary and historic building materials, and the work of Marry Miss is explored as a design approach for developing a contemporary intervention that references the layered historic building while inviting new means of occupancy between layers. The selected vehicle for the design research investigation is the Albemarle Hotel on Ghuznee Street in Wellington. The techniques proposed in this thesis to strengthen the Albemarle Hotel suggest an approach that might be applied to New Zealand’s wider body of historic buildings that constitute New Zealand’s heritage fabric, ultimately protecting them from demolition while preserving additional layers of their historic narratives. Over all the design research experiments suggest that contemporary interventions derived from structural strengthening may be a viable and cost-effective method of re-inhabiting New Zealand’s endangered heritage buildings, avoiding demolition and securing New Zealand’s heritage for future generations. Research Questions: This thesis challenges the current economically unsustainable approach of laterally reinforcing and completely ‘restoring’ 19th-20th century historic buildings in New Zealand. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the on-going life of a building. Can the weathered state of New Zealand's heritage buildings be proactively retained and celebrated as witnesses to their history? Can new lateral reinforcing requirements be conceived as active participants in revealing the on-going history of New Zealand's historic buildings?
The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes. The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world. In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison. The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs. After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices. Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.
Deconstruction, at the end of the useful life of a building, produces a considerable amount of materials which must be disposed of, or be recycled / reused. At present, in New Zealand, most timber construction and demolition (C&D) material, particularly treated timber, is simply waste and is placed in landfills. For both technical and economic reasons (and despite the increasing cost of landfills), this position is unlikely to change in the next 10 – 15 years unless legislation dictates otherwise. Careful deconstruction, as opposed to demolition, can provide some timber materials which can be immediately re-used (eg. doors and windows), or further processed into other components (eg. beams or walls) or recycled (‘cascaded’) into other timber or composite products (e.g. fibre-board). This reusing / recycling of materials is being driven slowly in NZ by legislation, the ‘greening’ of the construction industry and public pressure. However, the recovery of useful material can be expensive and uneconomic (as opposed to land-filling). In NZ, there are few facilities which are able to sort and separate timber materials from other waste, although the soon-to-be commissioned Burwood Resource Recovery Park in Christchurch will attempt to deal with significant quantities of demolition waste from the recent earthquakes. The success (or otherwise) of this operation should provide good information as to how future C&D waste will be managed in NZ. In NZ, there are only a few, small scale facilities which are able to burn waste wood for energy recovery (e.g. timber mills), and none are known to be able to handle large quantities of treated timber. Such facilities, with constantly improving technology, are being commissioned in Europe (often with Government subsidies) and this indicates that similar bio-energy (co)generation will be established in NZ in the future. However, at present, the NZ Government provides little assistance to the bio-energy industry and the emergence worldwide of shale-gas reserves is likely to push the economic viability of bio-energy further into the future. The behaviour of timber materials placed in landfills is complex and poorly understood. Degrading timber in landfills has the potential to generate methane, a potent greenhouse gas, which can escape to the atmosphere and cancel out the significant benefits of carbon sequestration during tree growth. Improving security of landfills and more effective and efficient collection and utilisation of methane from landfills in NZ will significantly reduce the potential for leakage of methane to the atmosphere, acting as an offset to the continuing use of underground fossil fuels. Life cycle assessment (LCA), an increasingly important methodology for quantifying the environmental impacts of building materials (particularly energy, and global warming potential (GWP)), will soon be incorporated into the NZ Green Building Council Greenstar rating tools. Such LCA studies must provide a level playing field for all building materials and consider the whole life cycle. Whilst the end-of-life treatment of timber by LCA may establish a present-day base scenario, any analysis must also present a realistic end-of-life scenario for the future deconstruction of any 6 new building, as any building built today will be deconstructed many years in the future, when very different technologies will be available to deal with construction waste. At present, LCA practitioners in NZ and Australia place much value on a single research document on the degradation of timber in landfills (Ximenes et al., 2008). This leads to an end-of-life base scenario for timber which many in the industry consider to be an overestimation of the potential negative effects of methane generation. In Europe, the base scenario for wood disposal is cascading timber products and then burning for energy recovery, which normally significantly reduces any negative effects of the end-of-life for timber. LCA studies in NZ should always provide a sensitivity analysis for the end-of-life of timber and strongly and confidently argue that alternative future scenarios are realistic disposal options for buildings deconstructed in the future. Data-sets for environmental impacts (such as GWP) of building materials in NZ are limited and based on few research studies. The compilation of comprehensive data-sets with country-specific information for all building materials is considered a priority, preferably accounting for end-of-life options. The NZ timber industry should continue to ‘champion’ the environmental credentials of timber, over and above those of the other major building materials (concrete and steel). End-of-life should not be considered the ‘Achilles heel’ of the timber story.
The city of Ōtautahi/Christchurch experienced a series of earthquakes that began on September 4th, 2010. The most damaging event occurred on February 22nd, 2011 but significant earthquakes also occurred on June 13th and December 23rd with aftershocks still occurring well into 2012. The resulting disaster is the second deadliest natural disaster in New Zealand’s history with 185 deaths. During 2011 the Canterbury earthquakes were one of the costliest disasters worldwide with an expected cost of up to $NZ30 billion. Hundreds of commercial buildings and thousands of houses have been destroyed or are to be demolished and extensive repairs are needed for infrastructure to over 100,000 homes. As many as 8,900 people simply abandoned their homes and left the city in the first few months after the February event (Newell, 2012), and as many as 50,000 may leave during 2012. In particular, young whānau and single young women comprised a disproportionate number of these migrants, with evidence of a general movement to the North Island. Te Puni Kōkiri sought a mix of quantitative and qualitative research to examine the social and economic impacts of the Christchurch earthquakes on Māori and their whānau. The result of this work will be a collection of evidence to inform policy to support and assist Māori and their whānau during the recovery/rebuild phases. To that end, this report triangulates available statistical and geographical information with qualitative data gathered over 2010 and 2011 by a series of interviews conducted with Māori who experienced the dramatic events associated with the earthquakes. A Māori research team at Lincoln University was commissioned to undertake the research as they were already engaged in transdisciplinary research (began in the May 2010), that focused on quickly gathering data from a range of Māori who experienced the disaster, including relevant economic, environmental, social and cultural factors in the response and recovery of Māori to these events. Participants for the qualitative research were drawn from Māori whānau who both stayed and left the city. Further data was available from ongoing projects and networks that the Lincoln research team was already involved in, including interviews with Māori first responders and managers operating in the CBD on the day of the February event. Some limited data is also available from younger members of affected whānau. Māori in Ōtautahi/Christchurch City have exhibited their own culturally-attuned collective responses to the disaster. However, it is difficult to ascertain Māori demographic changes due to a lack of robust statistical frameworks but Māori outward migration from the city is estimated to range between 560 and 1,100 people. The mobility displayed by Māori demonstrates an important but unquantified response by whānau to this disaster, with emigration to Australia presenting an attractive option for young Māori, an entrenched phenomenon that correlates to cyclical downturns and the long-term decline of the New Zealand economy. It is estimated that at least 315 Māori have emigrated from the Canterbury region to Australia post-quake, although the disaster itself may be only one of a series of events that has prompted such a decision. Māori children made up more than one in four of the net loss of children aged 6 to 15 years enrolled in schools in Greater Christchurch over the year to June 2011. Research literature identifies depression affecting a small but significant number of children one to two years post-disaster and points to increasing clinical and organisational demands for Māori and other residents of the city. For those residents in the eastern or coastal suburbs – home to many of the city’s Māori population - severe damage to housing, schools, shops, infrastructure, and streets has meant disruption to their lives, children’s schooling, employment, and community functioning. Ongoing abandonment of homes by many has meant a growing sense of unease and loss of security, exacerbated by arson, burglaries, increased drinking, a stalled local and national economy, and general confusion about the city’s future. Māori cultural resilience has enabled a considerable network of people, institutions, and resources being available to Māori , most noticeably through marae and their integral roles of housing, as a coordinating hub, and their arguing for the wider affected communities of Christchurch. Relevant disaster responses need to be discussed within whānau, kōhanga, kura, businesses, communities, and wider neighbourhoods. Comprehensive disaster management plans need to be drafted for all iwi in collaboration with central government, regional, and city or town councils. Overall, Māori are remarkably philosophical about the effects of the disaster, with many proudly relishing their roles in what is clearly a historic event of great significance to the city and country. Most believe that ‘being Māori’ has helped cope with the disaster, although for some this draws on a collective history of poverty and marginalisation, features that contribute to the vulnerability of Māori to such events. While the recovery and rebuild phases offer considerable options for Māori and iwi, with Ngāi Tahu set to play an important stakeholder in infrastructural, residential, and commercial developments, some risk and considerable unknowns are evident. Considerable numbers of Māori may migrate into the Canterbury region for employment in the rebuild, and trades training strategies have already been established. With many iwi now increasingly investing in property, the risks from significant earthquakes are now more transparent, not least to insurers and the reinsurance sector. Iwi authorities need to be appraised of insurance issues and ensure sufficient coverage exists and investments and developments are undertaken with a clear understanding of the risks from natural hazards and exposure to future disasters.
Geosynthetic reinforced soil (GRS) walls involve the use of geosynthetic reinforcement (polymer material) within the retained backfill, forming a reinforced soil block where transmission of overturning and sliding forces on the wall to the backfill occurs. Key advantages of GRS systems include the reduced need for large foundations, cost reduction (up to 50%), lower environmental costs, faster construction and significantly improved seismic performance as observed in previous earthquakes. Design methods in New Zealand have not been well established and as a result, GRS structures do not have a uniform level of seismic and static resistance; hence involve different risks of failure. Further research is required to better understand the seismic behaviour of GRS structures to advance design practices. The experimental study of this research involved a series of twelve 1-g shake table tests on reduced-scale (1:5) GRS wall models using the University of Canterbury shake-table. The seismic excitation of the models was unidirectional sinusoidal input motion with a predominant frequency of 5Hz and 10s duration. Seismic excitation of the model commenced at an acceleration amplitude level of 0.1g and was incrementally increased by 0.1g in subsequent excitation levels up to failure (excessive displacement of the wall panel). The wall models were 900mm high with a full-height rigid facing panel and five layers of Microgird reinforcement (reinforcement spacing of 150mm). The wall panel toe was founded on a rigid foundation and was free to slide. The backfill deposit was constructed from dry Albany sand to a backfill relative density, Dr = 85% or 50% through model vibration. The influence of GRS wall parameters such as reinforcement length and layout, backfill density and application of a 3kPa surcharge on the backfill surface was investigated in the testing sequence. Through extensive instrumentation of the wall models, the wall facing displacements, backfill accelerations, earth pressures and reinforcement loads were recorded at the varying levels of model excitation. Additionally, backfill deformation was also measured through high-speed imaging and Geotechnical Particle Image Velocimetry (GeoPIV) analysis. The GeoPIV analysis enabled the identification of the evolution of shear strains and volumetric strains within the backfill at low strain levels before failure of the wall thus allowing interpretations to be made regarding the strain development and shear band progression within the retained backfill. Rotation about the wall toe was the predominant failure mechanism in all excitation level with sliding only significant in the last two excitation levels, resulting in a bi-linear displacement acceleration curve. An increase in acceleration amplification with increasing excitation was observed with amplification factors of up to 1.5 recorded. Maximum seismic and static horizontal earth pressures were recorded at failure and were recorded at the wall toe. The highest reinforcement load was recorded at the lowest (deepest in the backfill) reinforcement layer with a decrease in peak load observed at failure, possibly due to pullout failure of the reinforcement layer. Conversely, peak reinforcement load was recorded at failure for the top reinforcement layer. The staggered reinforcement models exhibited greater wall stability than the uniform reinforcement models of L/H=0.75. However, similar critical accelerations were determined for the two wall models due to the coarseness of excitation level increments of 0.1g. The extended top reinforcements were found to restrict the rotational component of displacement and prevented the development of a preliminary shear band at the middle reinforcement layer, contributing positively to wall stability. Lower acceleration amplification factors were determined for the longer uniform reinforcement length models due to reduced model deformation. A greater distribution of reinforcement load towards the top two extended reinforcement layers was also observed in the staggered wall models. An increase in model backfill density was observed to result in greater wall stability than an increase in uniform reinforcement length. Greater acceleration amplification was observed in looser backfill models due to their lower model stiffness. Due to greater confinement of the reinforcement layers, greater reinforcement loads were developed in higher density wall models with less wall movement required to engage the reinforcement layers and mobilise their resistance. The application of surcharge on the backfill was observed to initially increase the wall stability due to greater normal stresses within the backfill but at greater excitation levels, the surcharge contribution to wall destabilising inertial forces outweighs its contribution to wall stability. As a result, no clear influence of surcharge on the critical acceleration of the wall models was observed. Lower acceleration amplification factors were observed for the surcharged models as the surcharge acts as a damper during excitation. The application of the surcharge also increases the magnitude of reinforcement load developed due to greater confinement and increased wall destabilising forces. The rotation of the wall panel resulted in the progressive development of shears surface with depth that extended from the backfill surface to the ends of the reinforcement (edge of the reinforced soil block). The resultant failure plane would have extended from the backfill surface to the lowest reinforcement layer before developing at the toe of the wall, forming a two-wedge failure mechanism. This is confirmed by development of failure planes at the lowest reinforcement layer (deepest with the backfill) and at the wall toe observed at the critical acceleration level. Key observations of the effect of different wall parameters from the GeoPIV results are found to be in good agreement with conclusions developed from the other forms of instrumentation. Further research is required to achieve the goal of developing seismic guidelines for GRS walls in geotechnical structures in New Zealand. This includes developing and testing wall models with a different facing type (segmental or wrap-around facing), load cell instrumentation of all reinforcement layers, dynamic loading on the wall panel and the use of local soils as the backfill material. Lastly, the limitations of the experimental procedure and wall models should be understood.
In major seismic events, a number of plan-asymmetric buildings which experienced element failure or structural collapse had twisted significantly about their vertical axis during the earthquake shaking. This twist, known as “building torsion”, results in greater demands on one side of a structure than on the other side. The Canterbury Earthquakes Royal Commission’s reports describe the response of a number of buildings in the February 2011 Christchurch earthquakes. As a result of the catastrophic collapse of one multi-storey building with significant torsional irregularity, and significant torsional effects also in other buildings, the Royal Commission recommended that further studies be undertaken to develop improved simple and effective guides to consider torsional effects in buildings which respond inelastically during earthquake shaking. Separately from this, as building owners, the government, and other stakeholders, are planning for possible earthquake scenarios, they need good estimates of the likely performance of both new and existing buildings. These estimates, often made using performance based earthquake engineering considerations and loss estimation techniques, inform decision making. Since all buildings may experience torsion to some extent, and torsional effects can influence demands on building structural and non-structural elements, it is crucial that demand estimates consider torsion. Building seismic response considering torsion can be evaluated with nonlinear time history analysis. However, such analysis involves significant computational effort, expertise and cost. Therefore, from an engineers’ point of view, simpler analysis methods, with reasonable accuracy, are beneficial. The consideration of torsion in simple analysis methods has been investigated by many researchers. However, many studies are theoretical without direct relevance to structural design/assessment. Some existing methods also have limited applicability, or they are difficult to use in routine design office practice. In addition, there has been no consensus about which method is best. As a result, there is a notable lack of recommendations in current building design codes for torsion of buildings that respond inelastically. There is a need for building torsion to be considered in yielding structures, and for simple guidance to be developed and adopted into building design standards. This study aims to undertaken to address this need for plan-asymmetric structures which are regular over their height. Time history analyses are first conducted to quantify the effects of building plan irregularity, that lead to torsional response, on the seismic response of building structures. Effects of some key structural and ground motion characteristics (e.g. hysteretic model, ground motion duration, etc.) are considered. Mass eccentricity is found to result in rather smaller torsional response compared to stiffness/strength eccentricity. Mass rotational inertia generally decreases the torsional response; however, the trend is not clearly defined for torsionally restrained systems (i.e. large λty). Systems with EPP and bilinear models have close displacements and systems with Takeda, SINA, and flag-shaped models yield almost the same displacements. Damping has no specific effect on the torsional response for the single-storey systems with the unidirectional eccentricity and excitation. Displacements of the single-storey systems subject to long duration ground motion records are smaller than those for short duration records. A method to consider torsional response of ductile building structures under earthquake shaking is then developed based on structural dynamics for a wide range of structural systems and configurations, including those with low and high torsional restraint. The method is then simplified for use in engineering practice. A novel method is also proposed to simply account for the effects of strength eccentricity on response of highly inelastic systems. A comparison of the accuracy of some existing methods (including code-base equivalent static method and model response spectrum analysis method), and the proposed method, is conducted for single-storey structures. It is shown that the proposed method generally provides better accuracy over a wide range of parameters. In general, the equivalent static method is not adequate in capturing the torsional effects and the elastic modal response spectrum analysis method is generally adequate for some common parameters. Record-to-record variation in maximum displacement demand on the structures with different degrees of torsional response is considered in a simple way. Bidirectional torsional response is then considered. Bidirectional eccentricity and excitation has varying effects on the torsional response; however, it generally increases the weak and strong edges displacements. The proposed method is then generalized to consider the bidirectional torsion due to bidirectional stiffness/strength eccentricity and bidirectional seismic excitation. The method is shown to predict displacements conservatively; however, the conservatism decreases slightly for cases with bidirectional excitation compared to those subject to unidirectional excitation. In is shown that the roof displacement of multi-storey structures with torsional response can be predicted by considering the first mode of vibration. The method is then further generalized to estimate torsional effects on multi-storey structure displacement demands. The proposed procedure is tested multi-storey structures and shown to predict the displacements with a good accuracy and conservatively. For buildings which twist in plan during earthquake shaking, the effect of P-Δλ action is evaluated and recommendations for design are made. P-Δλ has more significant effects on systems with small post- yield stiffness. Therefore, system stability coefficient is shown not to be the best indicator of the importance of P-Δλ and it is recommended to use post-yield stiffness of system computed with allowance for P-Δλ effects. For systems with torsional response, the global system stability coefficient and post- yield stiffness ration do not reflect the significance of P-Δλ effects properly. Therefore, for torsional systems individual seismic force resisting systems should be considered. Accuracy of MRSA is investigated and it is found that the MRSA is not always conservative for estimating the centre of mass and strong edge displacements as well as displacements of ductile systems with strength eccentricity larger than stiffness eccentricity. Some modifications are proposed to get the MRSA yields a conservative estimation of displacement demands for all cases.
Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.
A buckling-restrained braced frame (BRBF) is a structural bracing system that provides lateral strength and stiffness to buildings and bridges. They were first developed in Japan in the 1970s (Watanabe et al. 1973, Kimura et al. 1976) and gained rapid acceptance in the United States after the Northridge earthquake in 1994 (Bruneau et al. 2011). However, it was not until the Canterbury earthquakes of 2010/2011, that the New Zealand construction market saw a significant uptake in the use of buckling-restrained braces (BRBs) in commercial buildings (MacRae et al. 2015). In New Zealand there is not yet any documented guidance or specific instructions in regulatory standards for the design of BRBFs. This makes it difficult for engineers to anticipate all the possible stability and strength issues within a BRBF system and actively mitigate them in each design. To help ensure BRBF designs perform as intended, a peer review with physical testing are needed to gain building compliance in New Zealand. Physical testing should check the manufacturing and design of each BRB (prequalification testing), and the global strength and stability of each BRB its frame (subassemblage testing). However, the financial pressures inherent in commercial projects has led to prequalification testing (BRB only testing) being favoured without adequate design specific subassemblage testing. This means peer reviewers have to rely on BRB suppliers for assurances. This low regulation environment allows for a variety of BRBF designs to be constructed without being tested or well understood. The concern is that there may be designs that pose risk and that issues are being overlooked in design and review. To improve the safety and design of BRBFs in New Zealand, this dissertation studies the behaviour of BRBs and how they interact with other frame components. Presented is the experimental test process and results of five commercially available BRB designs (Chapter 2). It discusses the manufacturing process, testing conditions and limitations of observable information. It also emphasises that even though subassemblage testing is impractical, uniaxial testing of the BRB only is not enough, as this does not check global strength or stability. As an alternative to physical testing, this research uses computer simulation to model BRB behaviour. To overcome the traditional challenges of detailed BRB modelling, a strategy to simulate the performance of generic BRB designs was developed (Chapter 3). The development of nonlinear material and contact models are important aspects of this strategy. The Chaboche method is employed using a minimum of six backstress curves to characterize the combined isotropic and kinematic hardening exhibited by the steel core. A simplified approach, adequate for modelling the contact interaction between the restrainer and the core was found. Models also capture important frictional dissipation as well as lateral motion and bending associated with high order constrained buckling of the core. The experimental data from Chapter 2 was used to validate this strategy. As BRBs resist high compressive loading, global stability of the BRB and gusseted connection zone need to be considered. A separate study was conducted that investigated the yielding and buckling strength of gusset plates (Chapter 4). The stress distribution through a gusset plate is complex and difficult to predict because the cross-sectional area of gusset plate is not uniform, and each gusset plate design is unique in shape and size. This has motivated design methods that approximate yielding of gusset plates. Finite element modelling was used to study the development of yielding, buckling and plastic collapse behaviour of a brace end bolted to a series of corner gusset plates. In total 184 variations of gusset plate geometries were modelled in Abaqus®. The FEA modelling applied monotonic uniaxial load with an imperfection. Upon comparing results to current gusset plate design methods, it was found that the Whitmore width method for calculating the yield load of a gusset is generally un-conservative. To improve accuracy and safety in the design of gusset plates, modifications to current design methods for calculating the yield area and compressive strength for gusset plates is proposed. Bolted connections are a popular and common connection type used in BRBF design. Global out-of-plane stability tends to govern the design for this connection type with numerous studies highlighting the risk of instability initiated by inelasticity in the gussets, neck of the BRB end and/or restrainer ends. Subassemblage testing is the traditional method for evaluating global stability. However, physical testing of every BRBF variation is cost prohibitive. As such, Japan has developed an analytical approach to evaluate out-of-plane stability of BRBFs and incorporated this in their design codes. This analytical approach evaluates the different BRB components under possible collapse mechanisms by focusing on moment transfer between the restrainer and end of the BRB. The approach have led to strict criteria for BRBF design in Japan. Structural building design codes in New Zealand, Europe and the United States do not yet provide analytical methods to assess BRB and connection stability, with prototype/subassemblage testing still required as the primary means of accreditation. Therefore it is of interest to investigate the capability of this method to evaluate stability of BRBs designs and gusset plate designs used in New Zealand (including unstiffened gusset connection zones). Chapter 5 demonstrates the capability of FEA to study to the performance of a subassemblage test under cyclic loading – resembling that of a diagonal ground storey BRBF with bolted connections. A series of detailed models were developed using the strategy presented in Chapter 3. The geometric features of BRB 6.5a (Chapter 2) were used as a basis for the BRBs modelled. To capture the different failure mechanisms identified in Takeuchi et al. (2017), models varied the length that the cruciform (non-yielding) section inserts into the restrainer. Results indicate that gusset plates designed according to New Zealand’s Steel Structures Standard (NZS 3404) limit BRBF performance. Increasing the thickness of the gusset plates according to modifications discussed in Chapter 4, improved the overall performance for all variants (except when Lin/ Bcruc = 0.5). The effect of bi-directional loading was not found to notably affect out-of-plane stability. Results were compared against predictions made by the analytical method used in Japan (Takeuchi method). This method was found to be generally conservative is predicting out-of-plane stability of each BRBF model. Recommendations to improve the accuracy of Takeuchi’s method are also provided. The outcomes from this thesis should be helpful for BRB manufacturers, researchers, and in the development of further design guidance of BRBFs.
Field surveys and experimental studies have shown that light steel or timber framed plasterboard partition walls are particularly vulnerable to earthquake damage prompting the overarching objective of this research, which is to further the development of low damage seismic systems for non-structural partition walls in order to facilitate their adoption by industry to assist with reducing the losses associated with the maintenance and repair cost of buildings across their design life. In particular, this study focused on the behaviour of steel-framed partition walls systems with novel detailing that aim to be “low-damage” designed according to common practice for walls used in commercial and institutional buildings in New Zealand. This objective was investigated by (1) investigating the performance of a flexible track system proposed by researchers and industry by experimental testing of full-scale specimens; (2) investigating the performance of the seismic gap partition wall systems proposed in a number of studies, further developed in this study with input from industry, by experimental testing of full-scale specimens; and (3) investigating the potential implications of using these systems compared with traditionally detailed partition wall systems within multi-storey buildings using the Performance Based Earthquake Engineering loss assessment methodology. Three full-scale testing frames were designed in order to replicate, under controlled laboratory conditions, the effects of seismic shaking on partition walls within multi-storey buildings by the application of quasi-static uni-directional cyclic loading imposing an inter-storey drift. The typical configuration for test specimens was selected to be a unique “y-shape”, including one angled return wall, with typical dimensions of approximately 2400 mm along the main wall and 600 mm along (approximately) the returns walls with a height of 2405 mm from floor to ceiling. The specimens were aligned within test frames at an oblique angle to the direction of loading in order to investigate bi- directional effects. Three wall specimens with flexible track detailing, two identical plane specimens and the third including a doorway, were tested. The detailing involved removing top track anchors within the proximity of wall intersections, thus allowing the tracks to ‘bow’ out at these locations. Although the top track anchors were specified to be removed the proximity of wall intersections, a construction error was made whereby a single top track slab to concrete anchor was left in at the three-way wall junction. Despite this error, the experimental testing was deemed worthwhile since such errors will also occur in practice and because the behaviour of the wall can be examined with this fixing in mind. The specimens also included an acoustic/fire sealant at the top lining to floor boundary. In addition to providing drift capacities, the force-displacement behaviour is also reported, the dissipated energy was computed, and the parameters of the Wayne-Stewart hysteretic model were fitted to the results. The specimen with the door opening behaved significantly different to the plane specimens: damage to the doorway specimen began as cracking of the wallboard propagating from the corners of the doorway following which the L- and Y- shaped junctions behaved independently, whereas damage to the plane specimens began as cracking of the wallboard at the top of the L-junction and wall system deformed as a single unit. The results suggest that bi-directional behaviour is important even if its impact cannot be directly quantified by the experiments conducted. Damage to sealant implies that the bond between plasterboard and sealant is important for its seismic performance. Careful quality control is advised as defects in the bond may significantly impact its ability to withstand seismic movement. Two specimens with seismic gap detailing were tested: a steel stud specimen and a timber stud specimen. Observed drift capacities were significantly greater than traditional plasterboard partition systems. Equations were used to predict the drift at which damage state 1 (DS1) and damage state 2 (DS2) would initiate. The equation used to estimate the drift at the onset of DS1 accurately predicted the onset of plaster cracking but overestimated the drift at which the gap filling material was damaged. The equation used to predict the onset of DS2 provided a lower bound for both specimens and also when used to predict results of previous experimental tests on seismic gap systems. The gap-filling material reduced the drift at the onset of DS1, however, it had a beneficial effect on the re-centring behaviour of the linings. Out-of-plane displacements and return wall configuration did not appear to significantly impact the onset of plaster cracking in the specimens. A loss assessment according to the PBEE methodology was conducted on four steel MRF case study buildings: (1) a 4-storey building designed for the Christchurch region, (2) a 4-storey building designed for the Wellington region, (3) a 12-storey building designed for the Christchurch region, and (4) a 12- storey building designed for the Wellington region. The fragility parameters for a traditional partition system, the flexible track partition system, and the seismic gap steel stud and timber stud partition systems were included within the loss assessment. The order (lowest to highest) of each system in terms of the expected annual losses of each building when incorporating the system was, (1) the seismic gap timber stud system, (2) the seismic gap steel stud system, (3) the traditional/baseline system, and (4) the flexible track system. For the seismic gap timber stud system, which incurred the greatest reduction in expected annual losses for each case study building, the reduction in expected annual losses in comparison to the losses found when using the traditional system ranged from a 5% to a 30% reduction. This reinforces the fact that while there is a benefit to the using low damage partition systems in each building the extent of reduction in expected annual losses is significantly dependent on the particular building design and its location. The flexible track specimens had larger repair costs at small hazard levels compared to the traditional system but smaller repair costs at larger hazard levels. However, the resulting expected annual losses for the flexible track system was higher than the traditional system which reinforces findings from past studies which observed that the greatest contribution to expected annual losses arises from low to moderate intensity shaking seismic events (low hazard levels).
The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.