Search

found 279 results

Images, UC QuakeStudies

A CERA information sign on the fence in the Cathedral, placed to provide information to the public about the buildings seen from Cathedral Square. This one says "Regent Theatre: This has been demolished (see bottom left, now vacant site in photograph".

Images, UC QuakeStudies

A photograph of members of the public walking along Gloucester Street near the Colombo Street intersection. In the background, the site of the demolished Farmers Building can be seen as well as the car park to the left.

Images, UC QuakeStudies

A view down Colombo Street. A brick wall has been revealed due to the demolition of the adjoining building. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look of the cathedral.

Research papers, University of Canterbury Library

In the wake of the Canterbury earthquakes, one of the biggest threats to our heritage buildings is the risk of earthquakes and the associated drive to strengthen or demolish buildings. Can Small Town NZ balance the requirements of the EQPB legislation and economic realities of their places? The government’s priority is on safety of building occupants and citizens in the streets. However, maintaining and strengthening privately-owned heritage buildings is often cost prohibitive. Hence, heritage regulation has frequently been perceived as interfering with private property rights, especially when heritage buildings occupy a special place in the community becoming an important place for people (i.e. public benefits are larger than private). We investigate several case studies where building owners have been given green light to demolish heritage listed buildings to make way for modern developments. In two of the case studies developers provided evidence of unaffordable strengthening costs. A new trend that has emerged is a voluntary offer of contributing to an incentive fund to assist with heritage preservation of other buildings. This is a unique example where private owners offer incentives (via council controlled organisations) instead of it being purely the domain of the central or local governments.

Images, UC QuakeStudies

Signs on a cordon fence around a building on Worcester Street. One advertises a multi-cultural festival and the other one reads, "Lakes Chemist. Prescriptions can be obtained from Woodham Road Pharmacy". These provide the local public information about the changes and relevant news about the area.

Images, UC QuakeStudies

A CERA information sign on the fence in the Cathedral Square, placed to provide information to the public about the buildings seen from Cathedral Square. This one says "Clarendon Tower: This will be demolished. Currently CERA is working towards the appointment of an accredited demolistion contractor".

Images, UC QuakeStudies

A collapsed section of the Cranmer Courts on the corner of Montreal Street and Kilmore Street. Safety fences have been erected around the building to prevent the public getting close enough to it to be endangered by falling masonry in the event of another earthquake.

Images, UC QuakeStudies

A damaged building on the corner of Manchester and Welles Streets. Cordon fencing and road cones have been placed around the footpath and road to contain the demolition rubble and to keep the public away. On the fence is a sign that says 'No Entry'. 69-73 Manchester Street.

Videos, UC QuakeStudies

A video of a public forum being held to discuss the Anglican Church's three options for the restoration of the ChristChurch Cathedral. The three options are restoring the original cathedral, reinterpreting the original cathedral in modern materials, or building a contemporary cathedral. The video includes footage of speeches by Bishop Victoria Matthews and RCP project manager Marcus Read. It also includes footage of Matthews, Read, and Warren and Mahoney architect Bill Gregory answering questions from the public.

Images, Alexander Turnbull Library

Two people stare at a demolition scene. The man thinks there must have been an earthquake but the woman advises him that it was the city council. Refers to plans to demolish three buildings in Wellington's Willis Street without public consultation. The buildings due for demolition are owned by Singaporean Grand Complex Properties, which plans eventually to build a multimillion-dollar high-rise on the site, reports stuff.co.nz. The Canterbury earthquake happened 4th September and as a result there has been a lot of discussion about the need to preserve historic buildings if at all possible. Quantity: 1 digital cartoon(s).

Research papers, Lincoln University

The earthquake swarm that has struck Canterbury, New Zealand from September 2010 has led to widespread destruction and loss of life in the city of Christchurch. In response to this the New Zealand government convened a Royal Commission under the Commissions of Inquiry Act 1908. The terms of reference for this enquiry were wide ranging, and included inquiry into legal and best-practice requirements for earthquake-prone buildings and associated risk management strategies. The Commission produced a final report on earthquake-prone buildings and recommendations which was made public on the 7th December 2012. Also on the 7th of December 2012 the Ministry of Business, Innovation and Employment (MBIE) released a Consultation Document that includes many of the recommendations put forward by the Royal Commission. This paper examines the evidence presented to the Royal Commission and reviews their recommendations and those of MBIE in relation to the management of earthquake-prone buildings. An analysis of the likely impacts of the recommendations and proposals on both the property market and society in general is also undertaken.

Images, UC QuakeStudies

An aerial photograph looking west over the Arts Centre and Christ's College towards Hagley Park. The photograph has been captioned by BeckerFraserPhotos, "At the centre of this photo is a group of heritage stone buildings. Canterbury Museum and Christ's College were extensively earthquake strengthened prior to the EQs and re-opened to the public relatively quickly. The Arts Centre is undergoing extensive renovations. Hagley Park and the Botanic Gardens provide a richly colourful surrounding to these historic buildings".

Articles, UC QuakeStudies

A copy of a letter from Hugo Kristinsson which was sent to Roger Sutton on 19 September 2013. The letter was sent on behalf of Empowered Christchurch. In the letter, Kristinsson expresses his concern about changes to the Building Act which he states, 'waive liability for the Building Consent Authority when repairs are carried out on homes with land damage'. He also discusses the CERA community forums, which he feel are not fufilling their purpose of supporting and informing the Canterbury community. Lastly, Kristinsson lodges an Official Information Act request, asking for all forum notices and minutes to be released to the public and for access to land information to be provided.

Images, UC QuakeStudies

Members of the public speaking with police officers on the corner of Durham Street and Armagh Street in the aftermath of the 22 February earthquake. On the right the timber section of the historic Provincial Council Chambers can be seen, including the clock tower which has collapsed onto the road. Armagh Street leading into the city has been cordoned off by red tape.

Research papers, Victoria University of Wellington

A Line of Best Fit explores weakness and disconnection in the city. Weakness: There are over 600 earthquake prone buildings in Wellington. The urgency to strengthen buildings risks compromising the aesthetic integrity of the city through abrasive strengthening techniques, or losing a large portion of our built environment to demolition. The need for extensive earthquake strengthening in Wellington, Christchurch and other New Zealand cities provides an exciting opportunity for architecture. Disconnection: In Wellington pedestrian activity is focused around three main routes: Cuba Street, Lambton Quay and Courtney Place. The adjacent areas are often disconnected and lack vibrancy due to large building footprints, no-exit laneways and lack of public spaces. The Design proposes a strategy for earthquake strengthening, preserving and upgrading the built environment, and expanding and connecting the pedestrian realm. The site is two earthquake prone buildings on the block between Marion Street and Taranaki Street in central Wellington. A cut through the centre of the Aspro and Cathie Buildings ties the buildings together to strengthen and create a new arcade as public space. The cut aligns with existing pedestrian routes connecting the block with the city. The Design is divided into three components: Void, Curve, and Pattern and Structure. Void investigates the implications of cutting a portion out the existing buildings and the opportunities this provides for connection, urban interaction, and light. Curve discusses the unusual form of The Design in terms of scale, the human response and the surrounding spaces. Pattern and Structure considers the structural requirements of the project and how a void enveloped in perforated screens can strengthen the earthquake prone buildings. The importance of connection, providing strength in the city, a dialogue between old and new, and engagement with the unexpected are evaluated. Opportunities for further development and research are discussed, with particular reference to how the principles of The Design could be implemented on a larger scale throughout our cities. A Line of Best Fit is an architectural proposal that creates strength and connection.

Research papers, University of Canterbury Library

The 22nd February 2011, Mw 6.3 Christchurch earthquake in New Zealand caused major damage to critical infrastructure, including the healthcare system. The Natural Hazard Platform of NZ funded a short-term project called “Hospital Functions and Services” to support the Canterbury District Health Board’s (CDHB) efforts in capturing standardized data that describe the effects of the earthquake on the Canterbury region’s main hospital system. The project utilised a survey tool originally developed by researchers at Johns Hopkins University (JHU) to assess the loss of function of hospitals in the Maule and Bío-Bío regions following the 27th February 2010, Mw 8.8 Maule earthquake in Chile. This paper describes the application of the JHU tool for surveying the impact of Christchurch earthquake on the CDHB Hospital System, including the system’s residual capacity to deliver emergency response and health care. A short summary of the impact of the Christchurch earthquake on other CDHB public and private hospitals is also provided. This study demonstrates that, as was observed in other earthquakes around the world, the effects of damage to non-structural building components, equipment, utility lifelines, and transportation were far more disruptive than the minor structural damage observed in buildings (FEMA 2007). Earthquake related complications with re-supply and other organizational aspects also impacted the emergency response and the healthcare facilities’ residual capacity to deliver services in the short and long terms.

Images, UC QuakeStudies

People gather in a fenced-off area of Cathedral Square to view the damage to the cathedral and surrounding buildings. In the centre is the plinth which formerly held the statue of John Robert Godley. Taken on a day when a walkway was opened up between Re:Start Mall and Cathedral Square to allow temporary public access.

Research papers, University of Canterbury Library

Disaster recovery involves the restoration, repair and rejuvenation of both hard and soft infrastructure. In this report we present observationsfrom seven case studies of collaborative planning from post-earthquake Canterbury, each of which was selected as a means of better understanding ‘soft infrastructure for hard times’. Though our investigation is located within a disaster recovery context, we argue that the lessons learned are widely applicable. Our seven case studies highlighted that the nature of the planning process or journey is as important as the planning objective or destination. A focus on the journey can promote positive outcomes in and of itself through building enduring relationships, fostering diverse leaders, developing new skills and capabilities, and supporting translation and navigation. Collaborative planning depends as much upon emotional intelligence as it does technical competence, and we argue that having a collaborative attitude is more important than following prescriptive collaborative planning formulae. Being present and allowing plenty of time are also key. Although deliberation is often seen as an improvement on technocratic and expertdominated decision-making models, we suggest that the focus in the academic literature on communicative rationality and discursive democracy has led us to overlook other more active forms of planning that occur in various sites and settings. Instead, we offer an expanded understanding of what planning is, where it happens and who is involved. We also suggest more attention be given to values, particularly in terms of their role as a compass for navigating the terrain of decision-making in the collaborative planning process. We conclude with a revised model of a (collaborative) decision-making cycle that we suggest may be more appropriate when (re)building better homes, towns and cities.

Images, Alexander Turnbull Library

Photographically reproduced postcard shows a semi-humorous illustration by J L Martin of the Provincial Government buildings in Christchurch, seen looking southeast from across the intersection of Durham and Armagh Streets, imagined as warped and twisting in the Murchison Earthquake of 1929. Speech bubbles come from the mouths of some small figures: "Women & children first", "Order please", "Oh for the wings of a dove", "Stop that jazzing up there", "Wheres my puff box". The title below the picture is: "The camera cannot lie". The artist J L Martin has handwritten a message on the verso. In 1928, this building was occupied by the Commissioner of Crown Lands, the Receiver of Land Revenue, the Registrar of Deeds, the Lands Transfer Office and the Lands & Survey Department (See Wises directory 1928, page 214) Other Titles - Christchurch, Christmas Inscriptions: Verso - centre - With kind remembrances / From yours sincerely / J L Martin Quantity: 1 Other printed ephemera item(s). Physical Description: Photograph on postcard, 88 x 137 mm. Provenance: Ms McLean was the granddaughter of Arthur John Wicks, the Chief Draughtsman, Head Office, New Zealand Lands & Survey Department. He had worked with Crown Lands in Blenheim before moving to Wellington in 1917. The artist J L Martin sent the card to Mr Wicks.

Images, UC QuakeStudies

Flowers blooming in a vacant site left by the demolition of a building at the corner of Worcester Street and Stanmore Road. A memorial poster made to commemorate Natasha Sarah Hadfield, who died at the site where the Wicks Fish business was located. On it are comments from the public and the word ' We miss you mummy' in big letters.

Images, UC QuakeStudies

People look through the cordon fence at the corner of Colombo and Hereford Streets. On the left is the former site of Camera House, and on the right is the ANZ building, with its ground floor windows boarded up. Taken on a day when a walkway was opened up between Re:Start Mall and Cathedral Square to allow temporary public access.

Research papers, Lincoln University

Implementing seismic risk mitigation is a major challenge in many earthquake prone regions. The objective of this research is to investigate how property investment market practices can be used to enhance building owners’ decisions to improve seismic performance of earthquake prone buildings (EPBs). A case study method adopted, revealed the impacts of the property market stakeholders’ practices on seismic retrofit decisions. The findings from this research provide significant new insights on how property market-based incentives such as such as mandatory disclosure of seismic risks in all transactions in the property market, effective awareness seismic risk program and a unified earthquake safety assessment information system, can be used to enhance EPBs owners seismic retrofit decisions. These market-based incentives offer compelling reasons for the different property market stakeholders and the public at large to retain, care, invest, and act responsibly to rehabilitate EPBs. The findings suggest need for stakeholders involved in property investment and retrofit decisions to work together to foster seismic rehabilitation of EPBs.

Research papers, University of Canterbury Library

In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.

Images, Alexander Turnbull Library

At a time when the public needs an excellent service from their city council because of earthquake problems an independent government representative has been appointed to help get the dysfunctional [Christchurch] council back on track. Includes the news that chief executive Tony Marryatt has announced he has turned down a controversial $68,000 pay rise. Problems in the council have been apparent for several months, and in the last week there have been calls for the councillors to be sacked and replaced by commissioners. Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

A sculpture titled 'Passing Time' on the corner of St Asaph Street and Madras Street. 'Passing Time' was installed outside the CPIT Building for the 6th SCAPE (a contemporary public art programme in Christchurch) a few days prior to the 22 February 2011 earthquake. The work features twisting boxes depicting each year between 1906 (the founding of CPIT) and 2010 (the date of the sculpture's production).

Images, UC QuakeStudies

A sculpture titled 'Passing Time' on the corner of St Asaph Street and Madras Street. 'Passing Time' was installed outside the CPIT Building for the 6th SCAPE (a contemporary public art programme in Christchurch) a few days prior to the 22 February 2011 earthquake. The work features twisting boxes depicting each year between 1906 (the founding of CPIT) and 2010 (the date of the sculpture's production).