Search

found 217 results

Images, eqnz.chch.2010

With the land dropping about 1metre to 1.4metres after the earthquakes, a few roads besides the Avon and Heathcote Rivers are flooded with very high tides. Extra stop banks (on right) erected after the quakes have helped, but the road is now well below high water level. New Brighton Road, just short of New Brighton. The Pages Road bridge may b...

Images, UC QuakeStudies

Workers inspect a broken sewerage line in New Brighton. The photographer comments, "After the Christchurch earthquake on 23 December 2011 the sewer pipe got badly damaged at New Brighton and was leaking into the Avon River. I think the guy was worried about the fast flow causing him to fill his boots rather than the depth".

Audio, Radio New Zealand

A proposal to put houses back into Christchurch red zones is being shot down by some worried locals who say it's unfair and potentially unsafe. On Friday the crown-led agency, Regenerate Christchurch, released ten options for one area by the Avon river that 9 thousand people used to call home. Almost every house in the 602 hectare zone was demolished after the earthquakes.

Videos, UC QuakeStudies

A video of the removal of the earthquake-damaged Medway Street bridge from the banks of the Avon River. The video shows members of the Stronger Christchurch Infrastructure Rebuild Team removing the bridge and preparing it for transport to the Ferrymead Heritage Park. It will remain at the park until a permanent home can be found for it as an earthquake memorial.

Images, eqnz.chch.2010

There are occasional sewerage spills into the Avon River while all the sewer and road repairs are carried out. This rock wall was level and well above high tide level prior to the eathquakes. All the houses that can been seen here (except for those on the distant Port Hills) are in the suburban "red zone" and are still to be demolished.

Images, eqnz.chch.2010

The area beside the lower Avon River in New Brighton of Evans Avenue and Admirals Way has been cleared of houses and boundary fences (there were between 15 and 20 houses on this block) , fully fenced with post and wire and "spray on" grass applied. These were all red zone properties acquired by the crown after the land was deemed too damaged t...

Images, eqnz.chch.2010

A month after the 1st anniversary of the deadly Christchurch earthquake (22/02/11) a road cone lies on New Brighton Road, alongside the Avon River. Part of the earthquake 1st anniversary remembrance was for people to place flowers in road cones (and there are hundreds of thousands in the city). Many had flowers in them, as this one did. Photo ...

Images, UC QuakeStudies

A wooden house in Wainoni has visibly bowed inwards towards its centre. The photographer comments, "During the numerous earthquakes in Christchurch the land which ran alongside the Avon river on Avonside Drive slumped towards the waterway. In a line parallel to the road the road, but around 20m away a ground movement occurred which caused some houses to rise up or sink down".

Images, eqnz.chch.2010

Prior to the earthquakes (mainly the February 22 2011 event) this park bench was at track level. Shortly after the February quake someone in the council did the sums and realised that the area near the Avon River had dropped between a metre and 1.4m (about 4 foot), so a rush job by contractors shifted in many tonnes of rock and gravel to raise a...

Images, eqnz.chch.2010

The permanent closure (to motor vehicles) of the Bexley red zone streets has started. This was once the main south-north route just west of the Avon River in the New Brighton area, till an expressway (ring road) was built about 80m to the west (right) about 12-13 years ago. Then it became just another suburban street, but now all the houses ...

Research papers, University of Canterbury Library

Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).

Images, UC QuakeStudies

A badly damaged house in Burwood. Parts of the house have moved in different directions, leaving walls and doors misaligned. The photographer comments, "Although this looks like an extreme wide angle shot it is actually a house tilted in every direction at the same time. The earthquake caused the ground to vibrate and compress so much that the sandy soil liquefied and caused the ground to collapse under this modern home".

Audio, Radio New Zealand

Thousands of people in Christchurch and around the country paused at 12.51 on Monday afternoon to mark a decade since the February 22 magnitude 6.3 earthquake which claimed 185 lives. It was 10 years ago today when an ordinary Christchurch day turned to hell for so many. But in contrast to the harrowing scenes and sounds of that day, today a large peaceful crowd gathered at the Civic Memorial Service on the banks of the Avon River under large oak trees. Reporter Sally Murphy and cameraman Nate McKinnon were there.

Images, UC QuakeStudies

Large cracks run through the brick cladding of this house in Wainoni. The photographer comments, "During the numerous earthquakes in Christchurch the land which ran alongside the Avon river on Avonside Drive slumped towards the waterway. Houses which were wooden framed and had an external brick veneer started to sink into the liquefied soil. This caused the brick walls to crack, but the houses' occupants though shook up were saved by the wooden framework from the houses collapsing on them".

Images, UC QuakeStudies

A residential street in New Brighton. Liquefaction still lines the street, and lampposts are leaning in different directions. The photographer comments, "This is the New Brighton red zone, which is parallel to the Avon River. The area suffered serious liquefaction during the numerous earthquakes/aftershocks and the land is being bought by the government. Although the houses do not look too bad in the background they have suffered badly. On the day I took this picture the council had just hours before cut the grass, which made the area look less abandoned".

Research papers, University of Canterbury Library

The 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes caused significant damage to Christchurch and surrounding suburbs as a result of the widespread liquefaction and lateral spreading that occurred. Ground surveying-based field investigations were conducted following these two events in order to measure permanent ground displacements in areas significantly affected by lateral spreading. Data was analysed with respect to the distribution of lateral spreading vs. distance from the waterway, and the failure patterns observed. Two types of failure distribution patterns were observed, a typical distributed pattern and an atypical block failure. Differences in lateral spreading measurements along adjacent banks of the Avon River in the area of Dallington were also examined. The spreading patterns between the adjacent banks varied with the respective river geometry and/or geotechnical conditions at the banks.

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.

Videos, NZ On Screen

This 1974 end of year special for music show Popco features cover songs performed in the studio and around Christchurch. Presenting and singing are Rob Guest (before musicals fame), Steve Gilpin (before he founded Mi-Sex) and Hayden Wood. Joining them are Space Waltz (in their glam rock glory), Annie Whittle (on the banks of the Avon), show regulars the Maggie Burke Dancers in Cathedral Square, Mark Williams (sparkling in green lurex), Bunny Walters and Claire Raine, Rockinghorse (featuring 'Nature' composer Wayne Mason), Drut (complete with flaming guitar) and Beaver (in the finale).

Videos, UC QuakeStudies

Aerial footage of Christchurch recorded the day after the 22 February 2011 earthquake. The footage shows damage to the Smith City car park, the Cathedral of the Blessed Sacrament, the CTV Building, the PGC Building, the Durham Street Methodist Church, the Lyttelton Timeball Station, the roads alongside the Avon River, and the ChristChurch Cathedral. It also shows New Zealand Army road blocks outside the hospital, crushed buses on Colombo Street, a Royal New Zealand Navy vessel in Lyttelton Harbour, rock fall on the Summit Road, collapsed cliffs in Sumner and Redcliffs, tents set up in a park, flooding in New Brighton, and liquefaction in QEII Park.

Images, Alexander Turnbull Library

The title reads 'Future Christchurch CBD?...' Two people stare at numerous large featureless blocks across the Avon River. One says 'Those buildings look pretty ugly' and the other points out that they are 'just the piles'. Context: The Christchurch City Council is moving to impose urban-design etiquette and avert architectural mistakes such as clashing with the neighbours, glaring corporate colours and the long, blank walls common to most suburban shopping malls. The proposed rules will be overseen by an urban-design panel of four experts drawn from a pool of 12 architects, designers, planners and valuers. Quantity: 1 digital cartoon(s).

Research papers, Lincoln University

Prognostic modelling provides an efficient means to analyse the coastal environment and provide effective knowledge for long term urban planning. This paper outlines how the use of SWAN and Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution through hydrodynamic forcing for the Greater Christchurch coastal environment. This research followed the data integration techniques of Silva and Taborda (2012) and utilises their beach morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements are currently being complied with when applying the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those requirements. This is because coastal hazard risk has not been thoroughly quantified by the installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, the Christchurch City Council’s (CCC) flood management area does provide an extent to which managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme events such as storm surge given these future predictions. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion within a small spatial scale due to the river discharge. There is domination of the marine environment over the river system determined by the lack of generation of a distinct river delta, and river channel has not formed within the intertidal zone clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis effectively and the efficiency of that performance is determined by the computational operating system.

Research papers, Lincoln University

This thesis is a theoretical exploration of ‘remembrance’ and its production in the interactions between people/s and the landscape. This exploration takes place in the broad context of post earthquake Christchurch with a focus on public spaces along the Ōtākaro – Avon river corridor. Memory is universal to human beings, yet memories are subjective and culturally organized and produced - the relationship between memory and place therefore operates at individual and collective levels. Design responses that facilitate opportunities to create new memories, and also acknowledge the remembered past of human – landscape relationships are critical for social cohesion and wellbeing. I draw on insights from a range of theoretical sources, including critical interpretive methodologies, to validate subjective individual and group responses to memory and place. Such approaches also allowed me, as the researcher, considerable freedom to apply memory theory through film to illustrate ways we can re-member ourselves to our landscapes. The Ōtākaro-Avon river provided the site through and in which film strategies for remembrance are explored. Foregrounding differences in Māori and settler cultural orientations to memory and landscape, has highlighted the need for landscape design to consider remembrance - those cognitive and unseen dimensions that intertwine people and place. I argue it is our task to make space for such diverse relationships, and to ensure these stories and memories, embodied in landscape can be read through generations. I do not prescribe methods or strategies; rather I have sought to encourage thinking and debate and to suggest approaches through which the possibilities for remembrance may be enhanced.

Images, eqnz.chch.2010

Further damage to the bank following the two quakes on 23/12/11. The sewer line broke here and was repaired (patched) by council staff on Christmas Eve. It is hard to beleve that this rock wall was level with the land here, before any of the quakes.

Audio, Radio New Zealand

Kim Hill talks to Sam Crofskey, the owner of C1 Espresso in the Christchurch CBD, which reopened in 2012 after the Canterbury earthquakes and will celebrate its twentieth anniversary this year. He spoke on the WORD Christchurch panel, How Are We Doing, Christchurch?, and this week launched Let's Take a Walk, a pop-up book for children about the quakes that he created with his wife Fleur and illustrator Hannah Beehre. He is joined by Joseph Hullen (Ngai Tuahuriri, Ngai Tahu), a hunter gatherer, fisherman, explorer, kaitiaki and storyteller who has spent a lifetime gathering traditional kai and listening to stories about his hapu. He is a whakapapa researcher for Te Runanga o Ngai Tahu, and is leading three sold-out walking tours during WORD Christchurch along the banks of the Otakaro (Avon River), uncovering the city's history.

Videos, NZ On Screen

This promotional travelogue, made for the Christchurch City Council, shows off the city and its environs. Filmed at a time when New Zealand’s post-war economy was booming as it continued its role as a farmyard for the “Old Country”, it depicts Christchurch as a prosperous city, confident in its green and pleasant self-image as a “better Britain” (as James Belich coined NZ’s relationship to England), and architecturally dominated by its cathedrals, churches and schools. Many of these buildings were severely damaged or destroyed in the earthquakes of 2010 and 2011.

Research papers, University of Canterbury Library

The 2010 Darfield and 2011 Christchurch Earthquakes triggered extensive liquefaction-induced lateral spreading proximate to streams and rivers in the Christchurch area, causing significant damage to structures and lifelines. A case study in central Christchurch is presented and compares field observations with predicted displacements from the widely adopted empirical model of Youd et al. (2002). Cone penetration testing (CPT), with measured soil gradation indices (fines content and median grain size) on typical fluvial deposits along the Avon River were used to determine the required geotechnical parameters for the model input. The method presented attempts to enable the adoption of the extensive post-quake CPT test records in place of the lower quality and less available Standard Penetration Test (SPT) data required by the original Youd model. The results indicate some agreement between the Youd model predictions and the field observations, while the majority of computed displacements error on the side of over-prediction by more than a factor of two. A sensitivity analysis was performed with respect to the uncertainties used as model input, illustrating the model’s high sensitivity to the input parameters, with median grain size and fines content among the most influential, and suggesting that the use of CPT data to quantify these parameters may lead to variable results.

Research papers, Lincoln University

The 48hr Design Challenge, run by the Christchurch City Council and held at Lincoln University, provided an opportunity for Council to gain inspiration from the design and architecture industry, while testing the draft Central City Plan currently being developed. The Challenge was a response to the recent earthquakes in Christchurch and brought together local and international talent. A total of 15 teams took part in the Challenge, with seven people in each including engineers, planners, urban designers, architects and landscape architects, as well as one student on each team. The four sites within the Red Zone included the Cathedral Square and BNZ Building; 160 Gloucester Street; the Orion NZ Building at 203 Gloucester Street; and 90 Armagh Street, including the Avon River and Victoria Square. The fifth site, which sits outside the Red Zone, is the former Christchurch Women’s Hospital at 885 Colombo Street. This is team SoLA's entry for 160 Gloucester Street.

Research papers, University of Canterbury Library

The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.