Trees cut down so a house being removed from behind could get out above the fence on one of those elevating house removal trailers. I don't know the story about the yellow (recycling) wheelie bin - the wheels have been removed.
It is well established that urban green areas provide a wide range of social, aesthetic, environmental and economic benefits. The importance of urban green spaces has been known for decades; however the relationship between urban livability and green areas, as incorporated in overall urban green structure, has become the focus of international studies during the last 10 to 15 years. The spatial structure of green space systems has important consequences for urban form; configuring urban resources, controlling urban size, improving ecological quality of urban areas and preventing or mitigating natural disasters. However, in the field of architecture or urban design, very little work has been done to investigate the potential for built form to define and differentiate the edge to a green corridor ... This thesis therefore poses the hypothesis that architecture and urban design critically mediate between city and green corridor, through intensification and definition of the built edge, as a means of contributing to an ecological city form.
The earthquakes that struck Ōtautahi/Christchurch began September 2010 and continued throughout2012 with the worse shock being February 22, 2011. The extended ‘seismic event’ radically altered thegeophysical and socio-cultural environments of the city. This working paper presents a broad array of datadescribing the impacts of the disaster on Māori. These data frame the results of small email surveyconducted 18 months after the most destructive February 22, 2011. This survey followed two projectsinvestigating the resilience of Māori to the disaster (Lambert & Mark-Shadbolt, 2011; Lambert & Mark-Shadbolt, 2012; Lambert, Mark-Shadbolt, Ataria, & Black, 2012). Results show that while the termresilience has become common to the point of cliché, the Māori experience thus far is best described asendurance.
20140521_1080_1D3-24 It has started! Removal of the double-glazed windows is underway at my "red zone" house, now owned by the Government of New Zealand. Sold to CERA (the government agency) in October 2012 and has remained empty since, despite having little damage, apart from the tilt to the front from the land damage that occurred during the...
The title reads 'Ellerslie Flower Show to return to Christchurch...' Below are nine cameos showing 'sinking violets', 'cracked chrysanthemums', 'pooey perrenials', 'rubble roses', 'portaloo poppies', 'munted marigolds', 'knackered natives', the 'lily of liquefaction' and 'wearable exhibits' which shows a woman wearing a toilet roll and carrying a spade. Context: The next Ellerslie International Flower Show will be staged in North Hagley Park from 7-11 March 2012. Following cancellation of the 2011 Show after the 22 February earthquake, Christchurch City Council has confirmed that the citys premier garden show will go ahead next year in the same venue as previous years. (http://www.ellerslieflowershow.co.nz/) Quantity: 1 digital cartoon(s).
A review of the week's news including... Relief after cyclone Cook passes quickly down the North Island with limited damage, questions about what was known about the increasing risk of Edgecumbe stop banks bursting, the man who gave us Fred Dagg has died suddenly, three more former CERA staffers are being investigated after conflict of interests prompted calls for a wider inquiry, a warning more homeless families will be sleeping in cars parks and garages in Auckland this winter, the High Court rules excessive defamation damages against Colin Craig constitute a miscarriage of justice, a verdict in a defamation against the Labour leader Andrew Little, relatives of New Zealand soldiers killed on duty in South East Asia are relieved their family members will be finally returned home, US consumer campaigner Erin Brockovich visits Christchurch homeowners who are trying to settle earthquake insurance claims six years on, three teams have been cut from the Super Rugby competition and a more than 50 year old copper time capsule has been cracked open.
The two nice trees in the front of my old property (now owned by the government) have been cut down so the main section of the house behind could be trucked down the drive. The truck must have been up against the fence to get the height above the house to the left (15 Velsheda Street). Down this drive were numbers 17, 19 and 21 (still occupied b...
A review of the week's news, including... Maori across the country accepting a challenge set by the Maori King to battle the Government over water rights, the Government says Labour's new education policies are flawed, expensive and unnecessary while it's being accused of exploiting the Christchurch earthquakes to force through sweeping changes to schools in the city, Tuhoe is to get 170-million dollars in compensation and more control over Te Urewera National Park in its settlement with the Crown for historical grievances, hundreds of angry and stunned paper mill workers in Kawerau are in limbo over how many will lose their jobs with Norske Skog announcing its halving production, the shotputter Valerie Adams will receive her gold medal in a public ceremony in Auckland on Wednesday, details from of the police investigation into John Bank's mayoral campaign donations have been made public, a man who helped his chronically ill wife commit suicide has broken down in tears after being discharged without conviction and Invercargill has rolled out the red carpet in style, hosting the world premiere of New Zealand's latest feature film.
Deep shear wave velocity (Vs) profiles (>400 m) were developed at 14 sites throughout Christchurch, New Zealand using surface wave methods. This paper focuses on the inversion of surface wave data collected at one of these sites, Hagley Park. This site is located on the deep soils of the Canterbury Plains, which consist of alluvial gravels inter-bedded with estuarine and marine sands, silts, clays and peats. Consequently, significant velocity contrasts exist at the interface between geologic formations. In order to develop realistic velocity models in this complex geologic environment, a-priori geotechnical and geologic data were used to identify the boundaries between geologic formations. This information aided in developing the layering for the inversion parameters. Moreover, empirical reference Vs profiles based on material type and confining pressure were used to develop realistic Vs ranges for each layer. Both the a-priori layering information and the reference Vs curves proved to be instrumental in generating realistic velocity models that account for the complex inter-bedded geology in the Canterbury Plains.
Text reads 'Parking wardens resume work in Christchurch'. A parking warden peers anxiously at a huge tanker named 'Bill's Septic Tank Services' which is apparently parked illegally. The driver of the tanker, who holds the nozzle of a pump attached to the tank, says 'Your move!' suggesting the threat of a sewage spill if the warden insists on compliance. Context - 'After a lengthy grace period following the devastating February 22 quake, Parking wardens were yesterday on the hunt for parking infringers in the city's non-metered time-restricted zones, loading zones, bus/tour coach stops and taxi stands, and on the likes of broken yellow lines.' The resumption of work by the parking wardens does suggest a return to normal in Christchurch. (NZHerald 30 May 2011) Colour and black and white versions available Quantity: 2 digital cartoon(s).
The study contributes to a better understanding of utilisation and interaction patterns in post-disaster temporary urban open spaces. A series of devastating earthquakes caused large scale damage to Christchurch’s central city and many suburbs in 2010 and 2011. Various temporary uses have emerged on vacant post-earthquake sites including community gardens, urban agriculture, art installations, event venues, eateries and cafés, and pocket parks. Drawing on empirical data obtained from a spatial qualities survey and a Public Life Study, the report analyses how people used and interacted with three exemplary transitional community-initiated open spaces (CIOS) in relation to particular physical spatial qualities in central Christchurch over a period of three weeks. The report provides evidence that users of post-disaster transitional community-initiated open spaces show similar utilisation and interaction patterns in relation to specific spatial qualities as observed in other urban environments. The temporary status of CIOS did apparently not influence ‘typical’ utilisation and interaction patterns.
Heavy traffic at the corner of Moorhouse Avenue and Manchester Street as people attempt to leave the city centre shortly after the 22 February earthquake. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones ... As we got to Moorhouse Avenue, we found we had to quickly drive underneath [the Colombo Street overbridge]and carry on down to Brougham Street as the bridge was being closed at that moment. From Brougham, we headed back up towards Madras. The traffic lights were out and the intersection was chaos. Over the next couple of hours, we continued crawling through heavy traffic. Impressively, everyone was very orderly despite the feeling of panic and the continuing aftershocks. We chatted to others in other vehicles to exchange news and stopped to speak to a lady that had broken down following water in the engine after having driven hrough floods".
Artist and landscape architect Bridget Allen wouldn't have known how appropriate the name of her gardening business was to be when she set it up, out of Ilam art school and working at the Christchurch Botanic Gardens. The name Regenerative Gardening Maintenance was prophetic given her city and its landscape was about to start regenerating. The 2010-2011 Canterbury earthquakes saw not only buildings turned to rubble, large tracts of land, including an area around Ōtākaro Avon River the size of two New York Central Parks, started to turn from suburbia back to nature. The red zone has been turning green ever since. In the wake of tragedy artists and gardeners came together to innovate and create new public spaces, with an eye on sustainability and community connection. Allen cofounded New Brighton sewing charity Stitch-o-Mat and retrained as a landscape architect. Since 2023 she has been the director of The Green Lab, which began after the quakes as Greening the Rubble, creating urban green spaces and events for connection, while also working with residents to make their own backyards more sustainable. Ever busy with working and planting bees, workshops to build habitats for plants and nature, and consultations to help people make their backyards more sustainable, on August 16 Bridget is running with The Green Lab Birds of Brighton printmaking workshops. It's at the Make Station in New Brighton Mall at 11am and 1pm. No experience is needed. She joined Culture 101's Mark Amery.
As a consequence of the 2010 – 2011 Canterbury earthquake sequence, Christchurch experienced widespread liquefaction, vertical settlement and lateral spreading. These geological processes caused extensive damage to both housing and infrastructure, and increased the need for geotechnical investigation substantially. Cone Penetration Testing (CPT) has become the most common method for liquefaction assessment in Christchurch, and issues have been identified with the soil behaviour type, liquefaction potential and vertical settlement estimates, particularly in the north-western suburbs of Christchurch where soils consist mostly of silts, clayey silts and silty clays. The CPT soil behaviour type often appears to over-estimate the fines content within a soil, while the liquefaction potential and vertical settlement are often calculated higher than those measured after the Canterbury earthquake sequence. To investigate these issues, laboratory work was carried out on three adjacent CPT/borehole pairs from the Groynes Park subdivision in northern Christchurch. Boreholes were logged according to NZGS standards, separated into stratigraphic layers, and laboratory tests were conducted on representative samples. Comparison of these results with the CPT soil behaviour types provided valuable information, where 62% of soils on average were specified by the CPT at the Groynes Park subdivision as finer than what was actually present, 20% of soils on average were specified as coarser than what was actually present, and only 18% of soils on average were correctly classified by the CPT. Hence the CPT soil behaviour type is not accurately describing the stratigraphic profile at the Groynes Park subdivision, and it is understood that this is also the case in much of northwest Christchurch where similar soils are found. The computer software CLiq, by GeoLogismiki, uses assessment parameter constants which are able to be adjusted with each CPT file, in an attempt to make each more accurate. These parameter changes can in some cases substantially alter the results for liquefaction analysis. The sensitivity of the overall assessment method, raising and lowering the water table, lowering the soil behaviour type index, Ic, liquefaction cutoff value, the layer detection option, and the weighting factor option, were analysed by comparison with a set of ‘base settings’. The investigation confirmed that liquefaction analysis results can be very sensitive to the parameters selected, and demonstrated the dependency of the soil behaviour type on the soil behaviour type index, as the tested assessment parameters made very little to no changes to the soil behaviour type plots. The soil behaviour type index, Ic, developed by Robertson and Wride (1998) has been used to define a soil’s behaviour type, which is defined according to a set of numerical boundaries. In addition to this, the liquefaction cutoff point is defined as Ic > 2.6, whereby it is assumed that any soils with an Ic value above this will not liquefy due to clay-like tendencies (Robertson and Wride, 1998). The method has been identified in this thesis as being potentially unsuitable for some areas of Christchurch as it was developed for mostly sandy soils. An alternative methodology involving adjustment of the Robertson and Wride (1998) soil behaviour type boundaries is proposed as follows: Ic < 1.31 – Gravelly sand to dense sand 1.31 < Ic < 1.90 – Sands: clean sand to silty sand 1.90 < Ic < 2.50 – Sand mixtures: silty sand to sandy silt 2.50 < Ic < 3.20 – Silt mixtures: clayey silt to silty clay 3.20 < Ic < 3.60 – Clays: silty clay to clay Ic > 3.60 – Organics soils: peats. When the soil behaviour type boundary changes were applied to 15 test sites throughout Christchurch, 67% showed an improved change of soil behaviour type, while the remaining 33% remained unchanged, because they consisted almost entirely of sand. Within these boundary changes, the liquefaction cutoff point was moved from Ic > 2.6 to Ic > 2.5 and altered the liquefaction potential and vertical settlement to more realistic ii values. This confirmed that the overall soil behaviour type boundary changes appear to solve both the soil behaviour type issues and reduce the overestimation of liquefaction potential and vertical settlement. This thesis acts as a starting point towards researching the issues discussed. In particular, future work which would be useful includes investigation of the CLiq assessment parameter adjustments, and those which would be most suitable for use in clay-rich soils such as those in Christchurch. In particular consideration of how the water table can be better assessed when perched layers of water exist, with the limitation that only one elevation can be entered into CLiq. Additionally, a useful investigation would be a comparison of the known liquefaction and settlements from the Canterbury earthquake sequence with the liquefaction and settlement potentials calculated in CLiq for equivalent shaking conditions. This would enable the difference between the two to be accurately defined, and a suitable adjustment applied. Finally, inconsistencies between the Laser-Sizer and Hydrometer should be investigated, as the Laser-Sizer under-estimated the fines content by up to one third of the Hydrometer values.
Cities need places that contribute to quality of life, places that support social interaction. Wellbeing, specifically, community wellbeing, is influenced by where people live, the quality of place is important and who they connect with socially. Social interaction and connection can come from the routine involvement with others, the behavioural acts of seeing and being with others. This research consisted of 38 interviews of residents of Christchurch, New Zealand, in the years following the 2010-12 earthquakes. Residents were asked about the place they lived and their interactions within their community. The aim was to examine the role of neighbourhood in contributing to local social connections and networks that contribute to living well. Specifically, it focused on the role and importance of social infrastructure in facilitating less formal social interactions in local neighbourhoods. It found that neighbourhood gathering places and bumping spaces can provide benefit for living well. Social infrastructure, like libraries, parks, primary schools, and pubs are some of the places of neighbourhood that contributed to how well people can encounter others for social interaction. In addition, unplanned interactions were facilitated by the existence of bumping places, such as street furniture. The wellbeing value of such spaces needs to be acknowledged and factored into planning decisions, and local rules and regulations need to allow the development of such spaces.
Natural disasters are often unpredictable and are happening frequently. Some natural disasters cause damage to communities, resulting in displaced individuals. Due to this there is a need for shelter, however, there are many unknown factors. These include unknown demographics, a strain on time, cost, and resources, and the unknown location. This study begins by identifying a lack of identity and personality in existing post-disaster shelter designs, including the example of Linwood Park from the Christchurch 2011 earthquake. Further research shows the lack of personalisation within shelters, along with addressing key requirements needed for shelters. While providing the basic needs is essential, this thesis also addresses how personalisation can impact a space. Taking bach architecture as a driver for a basic, yet unique approach to temporary accommodation, Lake Clearwater Settlement was used as a case study. Through surveys, interviews, and a reflective design process, the importance of embracing identity emerges as a key element in fostering dignity, livelihood, and a sense of self in displaced individuals. This thesis explores innovative approaches to post-disaster shelter design with a focus on accommodating the unique needs and individuality of displaced individuals. From challenging conventional shelter concepts to embracing self-design and community involvement, the research addresses the question of how interior and exterior features can cater to the diverse requirements of those affected by natural disasters.
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km²), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
Questions to Ministers 1. Hon ANNETTE KING to the Minister of Finance: When he said recently "where the Government does have some influence, we are working hard to keep prices low", which prices was he referring to? 2. DAVID BENNETT to the Minister of Finance: What are some of the likely impacts on the Government's finances of the Christchurch earthquake? 3. Hon DAVID PARKER to the Acting Minister for Economic Development: Does he stand by all his statements on economic development? 4. Dr JACKIE BLUE to the Minister for ACC: How many claims has ACC received since the tragic earthquake on 22 February and what steps has the Government taken to facilitate prompt compensation for those seriously injured? 5. Hon MARYAN STREET to the Minister of Civil Defence: What is the basis for according priority to entry of the red zone in the Christchurch central business district? 6. NIKKI KAYE to the Minister for Social Development and Employment: What support is the Government giving to non-government organisations in Christchurch affected by the earthquake? 7. Hon TREVOR MALLARD to the Prime Minister: What role did he or his department play in the decision to shift the Rugby World Cup quarter finals, from AMI Stadium to Eden Park? 8. JACQUI DEAN to the Minister of Corrections: What progress has been made toward the Government's commitment to encourage private sector investment in the New Zealand corrections system? 9. Hon DARREN HUGHES to the Minister for Tertiary Education: What specific policy changes has the Government made to increase the number of apprenticeships and other building-skills training programmes since the September Canterbury earthquake? 10. SUE KEDGLEY to the Minister of Commerce: Will he use his powers under Part 4 of the Commerce Act 1986 to call for an investigation into the dairy wholesale and retail milk market, following the release of the Ministry of Agriculture and Forestry's review of the domestic milk market in New Zealand; if not, why not? 11. CAROL BEAUMONT to the Minister of Women's Affairs: Does she support the retention of the stand-alone and independent Ministry of Women's Affairs? 12. JOHN HAYES to the Minister of Agriculture: What steps has the Government recently made to progress agricultural greenhouse gas research?
The city of Christchurch, New Zealand, was until very recently a “Junior England”—a small city that still bore the strong imprint of nineteenth-century British colonization, alongside a growing interest in the underlying biophysical setting and the indigenous pre-European landscape. All of this has changed as the city has been subjected to a devastating series of earthquakes, beginning in September 2010, and still continuing, with over 12,000 aftershocks recorded. One of these aftershocks, on February 22, 2011, was very close to the city center and very shallow with disastrous consequences, including a death toll of 185. Many buildings collapsed, and many more need to be demolished for safety purposes, meaning that over 80 percent of the central city will have gone. Tied up with this is the city’s precious heritage—its buildings and parks, rivers, and trees. The threats to heritage throw debates over economics and emotion into sharp relief. A number of nostalgic positions emerge from the dust and rubble, and in one form is a reverse-amnesia—an insistence of the past in the present. Individuals can respond to nostalgia in very different ways, at one extreme become mired in it and unable to move on, and at the other, dismissive of nostalgia as a luxury in the face of more pressing crises. The range of positions on nostalgia represent the complexity of heritage debates, attachment, and identity—and the ways in which disasters amplify the ongoing discourse on approaches to conservation and the value of historic landscapes.
After a disaster, cities experience profound social and environmental upheaval. Current research on disasters describes this social disruption along with collective community action to provide support. Pre-existing social capital is recognised as fundamental to this observed support. This research examines the relationship between sense of place for neighbourhood, social connectedness and resilience. Canterbury residents experienced considerable and continued disruption following a large and protracted sequence of earthquakes starting in September 2010. A major aftershock on 22 February 2011 caused significant loss of life, destruction of buildings and infrastructure. Following this earthquake some suburbs of Christchurch showed strong collective action. This research examines the features of the built environment that helped to form this cooperative support. Data were collected through semi-structured interviews with 20 key informants followed by 38 participants from four case study suburbs. The objectives were to describe the community response of suburbs, to identify the key features of the built environment and the role of social infrastructure in fostering social connectedness. The last objective was to contribute to future planning for community resilience. The findings from this research indicated that social capital and community competence are significant resources to be called upon after a disaster. Features of the local environment facilitated the formation of neighbourhood connections that enabled participants to cope, manage and to collectively solve problems. These features also strengthened a sense of belonging and attachment to the home territory. Propinquity was important; the bumping and gathering places such as schools, small local shops and parks provided the common ground for meaningful pre-existing local interaction. Well-defined geography, intimate street typology, access to quality natural space and social infrastructure helped to build the local social connections and develop a sense of place. Resourceful individuals and groups were also a factor, and many are drawn to live near the inner city or more natural places. The features are the same well understood attributes that contribute to health and wellbeing. The policy and planning framework needs to consider broader social outcomes, including resilience in new and existing urban developments. The socio-political structures that provide access to secure and stable housing and local education should also be recognised and incorporated into local planning for resilience and the everyday.
Rocket Lab's Electron rocket launch today on the Mahia Peninsula has been scrubbed again, sadly. A power fault this time. Kaikoura residents and businesses are celebrating the re-opening of State Highway 1 north following a year of earthquake repairs. The coastal highway link between Picton and Christchurch was badly damaged during the November 2016 quake but will now re-open during the day from 7am. It will close at 8:30 each night so more repairs and assesments can be done. Kaikoura Top Ten Holiday Park co-owner Ed Nolan tells us what this means for his business and others in the town. The Prime Minister Jainda Ardern says the Government's new families package will reduce child poverty in the country by 48 per cent. We ask the panellists whether this is realistic or if there are other, more entrenched imprediments to lowering poverty in New Zealand. The panellists also discuss the state of the books, and discuss if they worry about national debt iincreasing, as the opposition has warned. The Prime Minister says wealthy New Zealanders can opt out of the Government's Winter Energy Payment, which will see those on a benefit, NZ Superannuation or a Veterans Pension get an extra boost due the winter season. Many are doubtful that will happen though. The panellists discuss why some wealthy people have missed out on tax cuts only to be able to reap the reward of this package. We also ask if they suspect this money will be used for heating purposes. The University of Otago has a new degree which brings science and art together, the BaSc. It aims to break down barriers between the two disciplines. Two students are graduating the degree this week. We talk to Eirenie Taua'i who has been studying Pacific Studies and Neuroscience. We aslk her what careers she is considering now and what it was like to study to very different courses. The families of those who died in the CTV building collapse in Christchurch's 2011 earthquake say they will continue to fight for justice. Police announced earlier this month they won't be prosecuting the engineers of the building after a three-year long investigation. The families met with police to ask and why say they aren't convinced all has been done. We ask panellist, barrister Jonathan Krebs, if other charges could and should be laid.
Wellington is located on a fault line which will inevitably, one day be impacted by a big earthquake. Due to where this fault line geographically sits, the central city and southern suburbs may be cut off from the rest of the region, effectively making these areas an ‘island’. This issue has absorbed a lot of attention, in particular at a large scale by many different fields: civil engineering, architecture, infrastructure planning & design, policymaking. Due to heightened awareness, and evolved school of practice, contemporary landscape architects deal with post-disaster design – Christchurch, NZ has seen this. A number of landscape architects work with nature, following increased application of ecological urbanism, and natural systems thinking, most notably at larger scales. To create parks that are designed to flood, or implement projects to protect shorelines. A form of resilience less often considered is how design for the small scale - people’s 1:1 relationship with their immediate context in exterior space - can be influential in forming a resilient response to the catastrophe of a major earthquake. This thesis intends to provide a response to address the shift of scales, as a paradigm for preparation and recovery. After a large-scale earthquake, state and civic policies and agencies may or subsequentially not go into action. The most important thinking and acting will be what happens in the minds, and the immediate needs, of each and every person; and how they act communally. This is considered in general social terms in state and civic education programmes of civil defence, for example, but much less considered in how the physical design of the actual spaces we inhabit day-to-day can educate us to be mentally prepared to help each other survive a catastrophe. Specifically, the identification of design of typologies can provide these educative functions. Typology inherently a physical form or manipulation of a generic and substantial prototype applicable in contexts is something that exists in the mind. Working with the physical and social appearance and experience of typologies can also/will change people’s minds. Socially, and economically driven, the community-building power of community gardening is well-proven and documented, and a noticeably large part of contemporary landscape architecture. The designs of this thesis will focus on community gardening specifically to form typologies of resilience preparation and response to disaster. The foundation will remain at the small scale of the local community. The specific question this thesis poses: Can we design local typologies in landscape architecture to integrate community gardens, with public space by preparing for and acting as recovery from a disaster?
In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.
This thesis is concerned with the effects of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns. The contents of the chapters are summarized as follows. In Chapter one, the general problems in seismic design are discussed and earthquake design methods based on the ductile design approach are described. Japanese, New Zealand and United States design codes are compared. Finally, the scope of this research project is outlined. In Chapter two, after reviewing previous research on confined concrete, the factors which affect the effectiveness of lateral confinement are discussed. Especially the effects of the yield strength of transverse reinforcement, the compressive strength of plain concrete and the strain gradient in the column section due to bending are discussed based on tests which were conducted by the author et al at Kyoto University and Akashi Technological College, Japan. In the axial compression tests on spirally reinforced concrete cylinders (150 mm in diameter by 300 mm in height), the yield strength of transverse reinforcement and the compressive strength of plain concrete were varied from 161 MPa to 1352 MPa and from 17 MPa to 60 MPa, respectively, as experimental parameters. It is found that, when high strength spirals are used as confining reinforcement, the strength and ductility of the confined core concrete are remarkably enhanced but need to be estimated assuming several failure modes which could occur. These are based on the observations that concrete cylinders with high strength spirals suddenly failed at a concrete compressive strain of 2 to 3.5 % due to explosive crushing of the core concrete between the spiral bars or due to bearing failure of the core concrete immediately beneath the spiral bars, while the concrete cylinders with ordinary strength spirals failed in a gentle manner normally observed. In addition, eccentric loading tests were conducted on concrete columns with 200 mm square section confined by square spirals. It is found that the effectiveness of confining reinforcement is reduced by the presence of the strain gradient along the transverse section of column. In Chapter three, the effectiveness of transverse reinforcement with various types of anchorage details which simplify the fabrication of reinforcing cages are investigated. Eight reinforced concrete columns, with either 400 mm or 550 mm square cross sections, were tested subjected to axial compression loading and cyclic lateral loading which simulated a severe earthquake. The transverse reinforcement consisted of arrangements of square perimeter hoops with 135° end hooks, cross ties with 90° and 135° or 180° end hooks, and 'U' and 'J' shaped cross ties and perimeter hoops with tension splices. Conclusions are reached with regard to the effectiveness of the tested anchorage details in the plastic hinge regions of columns designed for earthquake resistance. In Chapter four, the effectiveness of interlocking spirals as transverse reinforcement is studied. Firstly, the general aspects and the related problems of interlocking spirals to provide adequate ductility in the potential plastic hinge region of columns are discussed, referring to the provisions in the New Zealand code,the CALTRANS (California Transportation Authority) code and other related codes. Secondly, based on those discussions, a design method to securely interlock the spirals is proposed. Thirdly, the effectiveness of interlocking spirals is assessed based on column tests conducted as part of this study. Three columns with interlocking spirals and, for comparison, one rectangular column with rectangular hoopsandcross ties, were tested under cyclic horizontal loading which simulated a severe earthquake. The sections of those columns were 400 mm by 600 mm. In Chapter five, analytical models to investigate the buckling behaviour of longitudinal reinforcement restrained by cross ties with 90° and 135° end hooks and by peripheral hoops are proposed. The analyzed results using the proposed models compare well with the experimental observations described in Chapter three. Using those proposed models, a method to check the effectiveness of cross ties with 90° and 135° end hooks is proposed for practical design purposes. In Chapter six, a theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture referred to as the "Energy Balance Theory", which has been developed by Mander, Priestley and Park at University of Canterbury, is introduced. After discussing the problems in the "Energy Balance Theory", a modified theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture is proposed. The predictions from the modified theory are found to compare well with previous experimental results.
Deconstruction, at the end of the useful life of a building, produces a considerable amount of materials which must be disposed of, or be recycled / reused. At present, in New Zealand, most timber construction and demolition (C&D) material, particularly treated timber, is simply waste and is placed in landfills. For both technical and economic reasons (and despite the increasing cost of landfills), this position is unlikely to change in the next 10 – 15 years unless legislation dictates otherwise. Careful deconstruction, as opposed to demolition, can provide some timber materials which can be immediately re-used (eg. doors and windows), or further processed into other components (eg. beams or walls) or recycled (‘cascaded’) into other timber or composite products (e.g. fibre-board). This reusing / recycling of materials is being driven slowly in NZ by legislation, the ‘greening’ of the construction industry and public pressure. However, the recovery of useful material can be expensive and uneconomic (as opposed to land-filling). In NZ, there are few facilities which are able to sort and separate timber materials from other waste, although the soon-to-be commissioned Burwood Resource Recovery Park in Christchurch will attempt to deal with significant quantities of demolition waste from the recent earthquakes. The success (or otherwise) of this operation should provide good information as to how future C&D waste will be managed in NZ. In NZ, there are only a few, small scale facilities which are able to burn waste wood for energy recovery (e.g. timber mills), and none are known to be able to handle large quantities of treated timber. Such facilities, with constantly improving technology, are being commissioned in Europe (often with Government subsidies) and this indicates that similar bio-energy (co)generation will be established in NZ in the future. However, at present, the NZ Government provides little assistance to the bio-energy industry and the emergence worldwide of shale-gas reserves is likely to push the economic viability of bio-energy further into the future. The behaviour of timber materials placed in landfills is complex and poorly understood. Degrading timber in landfills has the potential to generate methane, a potent greenhouse gas, which can escape to the atmosphere and cancel out the significant benefits of carbon sequestration during tree growth. Improving security of landfills and more effective and efficient collection and utilisation of methane from landfills in NZ will significantly reduce the potential for leakage of methane to the atmosphere, acting as an offset to the continuing use of underground fossil fuels. Life cycle assessment (LCA), an increasingly important methodology for quantifying the environmental impacts of building materials (particularly energy, and global warming potential (GWP)), will soon be incorporated into the NZ Green Building Council Greenstar rating tools. Such LCA studies must provide a level playing field for all building materials and consider the whole life cycle. Whilst the end-of-life treatment of timber by LCA may establish a present-day base scenario, any analysis must also present a realistic end-of-life scenario for the future deconstruction of any 6 new building, as any building built today will be deconstructed many years in the future, when very different technologies will be available to deal with construction waste. At present, LCA practitioners in NZ and Australia place much value on a single research document on the degradation of timber in landfills (Ximenes et al., 2008). This leads to an end-of-life base scenario for timber which many in the industry consider to be an overestimation of the potential negative effects of methane generation. In Europe, the base scenario for wood disposal is cascading timber products and then burning for energy recovery, which normally significantly reduces any negative effects of the end-of-life for timber. LCA studies in NZ should always provide a sensitivity analysis for the end-of-life of timber and strongly and confidently argue that alternative future scenarios are realistic disposal options for buildings deconstructed in the future. Data-sets for environmental impacts (such as GWP) of building materials in NZ are limited and based on few research studies. The compilation of comprehensive data-sets with country-specific information for all building materials is considered a priority, preferably accounting for end-of-life options. The NZ timber industry should continue to ‘champion’ the environmental credentials of timber, over and above those of the other major building materials (concrete and steel). End-of-life should not be considered the ‘Achilles heel’ of the timber story.
This project was initiated by ENGEO Limited and KiwiRail Holdings Limited to assess the stability of Slovens Creek Viaduct (specifically its western abutment) and a 3km section of rail corridor between Slovens Creek Viaduct and Avoca on the Midland Line (MDL). Commonly known as the scenic TranzAlpine rail journey (through Arthurs Pass National Park) the MDL connects Greymouth to Christchurch via Rolleston, where the MDL meets the Main South Line into Christchurch. The project area is approximately 40km southeast of Arthurs Pass Township, in the eastern extension of the Castle Hill Basin which is part of the Waimakariri Catchment and Canterbury Foothills. The field area is underlain by Rakaia Terrane, which is part of the Torlesse Composite Terrane forming the basement rock unit for the field area. Cretaceous-Tertiary rocks of the Castle Hill Basin overlie the basement strata and record a transgression-regression sequence, as well as mid-Oligocene submarine volcanism. The stratigraphic sequence in the Castle Hill Basin, and its eastern extension to Avoca, comprises two formations of the Eyre group, the older Broken River Formation and the younger Iron Creek Formation. Deep marine Porter Group limestones, marls, and tuffs of Oligocene age succeed the Iron Creek Formation of the Eyre Group, and probably records the maximum of the transgression. The Enys Formation lies disconformably on the Porter Group and is overlain unconformably by Late Pleistocene glacifluvial and glacial deposits. The Tertiary strata in the Slovens-Avoca rail corridor are weak, and the clay-rich tuff derived from mid-Oligocene volcanism is particularly prone to slaking. Extensive mapping carried out for this project has identified that some 90 percent of the surface along the length of the Slovens-Avoca corridor has been subject to mass movement. The landslides of the Slovens-Avoca rail corridor are clearly younger than the Last Glaciation, and Slovens Creek has been downcutting, with associated faulting and uplift, to form the present day geomorphology of the rail corridor. Deep-seated landslides in the rail corridor extend to Slovens Creek, locally deflecting the stream course, and a generic ground failure model for the rail corridor has been developed. Exploratory geotechnical investigations, including core drilling, installation of an inclinometer and a piezometer, enabled the construction of a simple ground model and cross section for the Slovens Creek Viaduct western abutment. Limit-equilibrium and pseudo-static slope stability analyses using both circular and block critical slip surface search methods were applied to the ground model for the western abutment of Slovens Creek Viaduct. Piezometric and strength data obtained during laboratory testing of core material have been used to constrain the western abutment stability assessment for one representative section line (C-C’). Prior to pseudo-static sensitivity analyses peak ground acceleration (PGA) for various Ultimate Limit State (ULS) design return periods, defined by an equation given in NZS1170.5:2004, were calculated and have been used as a calibration technique to find and compare specific PGA values for pseudo-static analyses in the Slovens Creek Viaduct area. The main purpose has been to provide an indication of how railway infrastructure could be affected by seismic events of various return periods defined by ULS design standards for the area. Limit equilibrium circular slip surface search methods, both grid search and auto refine search, indicated the slope is stable with a FoS greater than 1.0 returned from each, although one particular surface returned the lowest FoS in each. This surface is in the lower portion of the slope, adjacent to Slovens Stream and northeast of the MDL. As expected, pseudo-static analyses returned a lower FoS overall when compared to limit equilibrium analyses. The PGA analyses suggest that partial ground failure at the Slovens Creek Viaduct western abutment could occur in a 1 in 25-year return period event within materials on the slower slope beyond the immediate rail corridor. A ULS (1 in 500-year) event in the Slovens Creek Viaduct area would likely produce a PGA of ~0.9g, and the effects on the western abutment and rail infrastructure would most likely be catastrophic. Observed ground conditions for the western abutment of the Slovens Creek Viaduct suggest there is no movement within the landslide at depth within the monitoring timeframe of this project (22 May 2015 – 4 August 2015). Slope stability monitoring is recommended to be continued in two parts: (1) the inclinometer in BH1 is to be monitored on a six monthly basis for one year following completion of this thesis, and then annually unless ground movements become evident; and (2) surface movement monitoring should be installed using a fixed datum on the stable eastern abutment. Long-term stability management strategies for the Slovens Creek Viaduct western abutment are dependent upon future observed changes and ongoing monitoring. Hazard and risk assessment using the KiwiRail Qualitative Risk Assessment Framework (QRA) is recommended, and if slope stability becomes problematic for operation of the Midland Line consideration should be given to deep slope drainage. In the event of a large magnitude or high PGA earthquake all monitoring should be reviewed.