Search

found 23024 results

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-001.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-006.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos of Christchurch City LIbraries Outreach staff working in welfare centres following the February 22 earthquake. File ref: CCL-2011-02-27-OperationStoryTime-boys-with-book From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-008.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-003.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-005.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-007.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-002.jpg From the collection of Christchurch City Libraries

Images, eqnz.chch.2010

Photos taken at Gap Filler fair on April 9 following the February 22 earthquake. www.gapfiller.org.nz/ File reference: CCL-2011-04-08-Addington-Gapfiller-004.jpg From the collection of Christchurch City Libraries

Articles, UC QuakeStudies

This study analysed liquefaction susceptibility and estimated ground settlements for two earthquake scenarios (foothills and Alpine Fault) for eastern Waimakariri District. The report was later partially superseded by Earthquake hazard assessment for Waimakariri District (Yetton and McCahon, 2009), which while not using such detailed analytical methods as the 2000 Beca report, reviewed new information available since 2000 (including that collected as part of the Pegasus Town development). This showed that the liquefaction susceptibility in eastern Waimakariri district was in fact much more variable than suggested in the 2000 Beca maps, and that liquefaction susceptibility was extremely difficult to predict without a site-specific investigation. See Object Overview for background and usage information.

Audio, Radio New Zealand

A frantic rewrite was required during the lockdown last year by novellist Janna Ruth, who'd set her novel Time to remember in Christchurch throughout 2020. The book's characters are mainly preoccupied by the 10th anniversary of the September 2010 Canterbury earthquake, but Janna knew she needed to include the pandemic once it took hold. But in fact she'd started working on the novel back in 2005, well before both traumatic events. Janna came to New Zealand from Germany to study geology, and she uses some of her memories from her university years in Time to remember. In it a group of university students bond and bicker, some of them still scarred by the earthquake a decade earlier.

Images, UC QuakeStudies

A digitally manipulated image of the high diving boards at QEII swimming pool. Rubble has fallen on the boards during the demolition of the complex. A sign reads "Poseidon Extreme". The photographer comments, "I do not know what Poseidon Extreme at this swimming pool looked like before the earthquake damaged it, but it looks really radical now during it's demolition. A strange coincidence is that Poseidon is referred to as 'Earth-Shaker' due to his role in causing earthquakes. So the demolition of this pool due to the series of quakes in Christchurch all seems to be foretold by the gods and that sign".

Videos, UC QuakeStudies

Aerial footage of Christchurch after the 4 September 2010 earthquake. The footage shows the earthquake damage to Wizard Home Loans & Cartridge World on Riccarton Road, Harding's Chemist and Angus Donaldson Copy Service on Colombo Street, Para Rubber and Westende Jewellers on Manchester Street, The Loaded Hog on Cashel Street, St Mary & St Athanasios Church on Edgeware Road, The Daily Bagel on Victoria Street, the Laxmi Foodstore on Barbadoes Street, Television Services on Westminster Street, The Hat Shop on High Street, St Paul's Parish Church on Gayhurst Road, Sullivan Park on Galbraith Road, and Avonside Drive.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape has been used to cordon off the house. Public notices can be seen on the fence, on the roof of the collapsed section and the section behind.

Images, Alexander Turnbull Library

A passerby stops at an advertisement on the lawn outside a house which reads 'Sound commercial property - Christchurch $450,000' and comments to the owner that it 'seems a good buy'. The owner tells him that's 'the yearly rental'. Context - property and rental prices in Christchurch since the earthquakes of 4 September 2010 and 22 February 2011. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A very large woman stands wedged between two rows of concrete pillars eating a huge cream bun. She says 'Christmas fare protection... it helps prevent lateral spread!' Context - overeating at Christmas and lateral spreading, which is associated with liquefaction and tends to occur near streams and waterways as the soil mass moves towards them. Reference to the Christchurch earthquake of 4th September 2010. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A man knocks at the door of a portaloo and asks if the sewer has been down long. The portaloo has a TV mast, a washingline, a letterbox, and flowers planted outside. In the background is a wrecked house. . Refers to the use of portaloos in parts of Christchurch since the earthquake of 4th September because of damage to plumbing infrastructure. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A man and woman read the paper and watch the news on television. The man says 'Roll on 2011' after reading the long list of disasters in New Zealand in 2010. They are 'Blizzards, South Canterbury Finance, Earthquakes, kiwifruit, Pike River' The TV announcer is discussing 'road deaths'. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Among the deformation features produced in Christchurch by the September 4th Darfield Earthquake were numerous and widespread “sand volcanoes”. Most of these structures occurred in urban settings and “erupted” through a hardened surface of concrete or tarseal, or soil. Sand volcanoes were also widespread in the Avon‐ Heathcote Estuary and offered an excellent opportunity to readily examine shallow subsurface profiles and as such the potential appearance of such structures in the rock record.

Research papers, University of Canterbury Library

Background and methodology The Mw 7.8, 14th November 2016 earthquake centred (item b, figure 1) in the Hurunui District of the South Island, New Zealand, damaged critical infrastructure across North Canterbury and Marlborough. We investigate the impacts to infrastructure and adaptations to the resulting service disruption in four small rural towns (figure 1): Culverden (a), Waiau (c), Ward (d) and Seddon (e). This is accomplished though literary research, interviews and geospatial analysis. Illustrating our methods, we have displayed here a Hurunui District hazard map (figure 2b) and select infrastructure inventories (figures 2a, 3).

Research Papers, Lincoln University

Liquefaction affects late Holocene, loose packed and water saturated sediment subjected to cyclical shear stress. Liquefaction features in the geological record are important off-fault markers that inform about the occurrence of moderate to large earthquakes (> 5 Mw). The study of contemporary liquefaction features provides a better understanding of where to find past (paleo) liquefaction features, which, if identified and dated, can provide information on the occurrence, magnitude and timing of past earthquakes. This is particularly important in areas with blind active faults. The extensive liquefaction caused by the 2010-2011 Canterbury Earthquake Sequence (CES) gave the geoscience community the opportunity to study the liquefaction process in different settings (alluvial, coastal and estuarine), investigating different aspects (e.g. geospatial correlation with landforms, thresholds for peak ground acceleration, resilience of infrastructures), and to collect a wealth geospatial dataset in the broad region of the Canterbury Plains. The research presented in this dissertation examines the sedimentary architecture of two environments, the alluvial and coastal settings, affected by liquefaction during the CES. The novel aim of this study is to investigate how landform and subsurface sedimentary architecture influence liquefaction and its surface manifestation, to provide knowledge for locating studies of paleoliquefaction in future. Two study cases documented in the alluvial setting showed that liquefaction features affected a crevasse splay and point bar ridges. However, the liquefaction source layer was linked to paleochannel floor deposits below the crevasse splay in the first case, and to the point bar deposits themselves in the second case. This research documents liquefaction features in the coastal dune system of the Canterbury Plains in detail for the first time. In the coastal dune setting the liquefiable layer is near the surface. The pore water pressure is vented easily because the coastal dune soil profile is entirely composed of non-cohesive, very well sorted sandy sediment that weakly resists disturbance from fluidised sediment under pressure. As a consequence, the liquefied flow does not need to find a specific crack through which the sediment is vented at the surface; instead, the liquefied sand finds many closely spaced conduits to vent its excess of pore water pressure. Therefore, in the coastal dune setting it is rare to observe discrete dikes (as they are defined in the alluvial setting), instead A horizon delamination (splitting) and blistering (near surface sills) are more common. The differences in styles of surface venting lead to contrasts in patterns of ejecta in the two environments. Whereas the alluvial environment is characterised by coalesced sand blows forming lineations, the coastal dune environment hosts apparently randomly distributed isolated sand blows often associated with collapse features. Amongst the techniques tested for the first time to investigate liquefaction features are: 3D GPR, which improved the accuracy of the trenching even six years after the liquefaction events; thin section analysis to investigate sediment fabric, which helped to discriminate liquefied sediment from its host sediment, and modern from paleoliquefaction features; a Random Forest classification based on the CES liquefaction map, which was used to test relationships between surface manifestation of liquefaction and topographic parameters. The results from this research will be used to target new study sites for future paleoliquefaction research and thus will improve the earthquake hazard assessment across New Zealand.

Images, UC QuakeStudies

A poster created by Empowered Christchurch to advertise their submission to the CERA Draft Transition Recovery Plan on social media.The poster reads, "Submission, CERA Draft Transition Recovery Plan. Seismic Risk. One thing we can learn from the past is that seismic risk in Canterbury has been underestimated before the earthquakes struck. This is confirmed in a report for EQC in 1991 (paper 2005). It is also the conclusion of the Royal Commission in the CTV report. A number of recommendations have been made but not followed. For example, neither the AS/NZS 1170.5 standard nor the New Zealand Geotechnical Society guidelines have been updated. Yet another recovery instrument is the Earthquake Prone Building Act, which is still to be passed by Parliament. As the emergency response part of the recovery is now behind us, we need to ensure sustainability for what lies ahead. We need a city that is driven by the people that live in it, and enabled by a bureaucracy that accepts and mitigates risks, rather than transferring them to the most vulnerable residents."

Research papers, The University of Auckland Library

This report provides an understanding of the nature of Canterbury subcontracting businesses operating in the space of earthquake reconstruction in Christchurch. It offers an in-depth look at the factors that influence the development of their capacity and capability to withstand the impact of volatile economic cycles, including the 2008 global financial crisis and the subsequent 2010/11 Canterbury earthquakes. There have been significant changes to the business models of the 13 subcontracting businesses studied since the earthquakes. These changes can be seen in the ways the case study subcontractors have adapted to cope with the changing demands that the rebuild posed. Apart from the magnitude of reconstruction works and new developments that directly affect the capacity of subcontracting businesses in Canterbury, case studies found that subcontractors’ capacity and capability to meet the demand varies and is influenced by the: subcontractors’ own unique characteristics, which are often shaped by changing circumstances in a dynamic and uncertain recovery process; and internal factors in relation to the company’s goal and employees’ needs

Research papers, The University of Auckland Library

Between September 4, 2010 and December 23, 2011, a series of earthquakes struck the South Island of New Zealand including the city of Christchurch producing heavy damage. During the strongest shaking, the unreinforced masonry (URM) building stock in Christchurch was subjected to seismic loading equal to approximately 150-200% of code values. Post-earthquake reconnaissance suggested numerous failures of adhesive anchors used for retrofit connection of roof and floor diaphragms to masonry walls. A team of researchers from the Universities of Auckland (NZ) and Minnesota (USA) conducted a field investigation on the performance of new adhesive anchors installed in existing masonry walls. Variables included adhesive type, anchor diameter, embedment length, anchor inclination, and masonry quality. Buildings were selected that had been slated for demolition but which featured exterior walls that had not been damaged. A summary of the deformation response measured during the field tests are presented. AM - Accepted Manuscript