
A scanned copy of a photograph of the garden of Di Madgin's former home in the Red Zone, taken before the earthquakes. She describes the scene in the photograph as, "This is the courtyard that we made, to have an eating place at the back of the house. The tree in the neighbours' was a tree that Pete's brother stole on a school trip up in the mountains from a national park. They planted this red beech in the garden. It became the neighbourhood bird tree and the sound was fantastic in the evenings."
A sewage pumping station on Avonside Drive has been lifted out of the ground by liquefaction. In the background, the damaged Snell Place footbridge over the Avon River is closed off with cordon fencing. The photographer comments, "A Sunday afternoon ride to New Brighton, then back via Aranui, Wainoni, Dallington, and Richmond. Not a cheerful experience. Dallington footbridge. The two pieces of this foot bridge have moved towards each other, so the bridge has developed quite a peak. The sewage pumping station has been heaved out of the ground by hydraulic pressure during quakes".
Yes, it was a joke. The tours, that is, not the yard filled with earthquake-caused sand volcanos. They were very real. You can see one covering the driveway in this photo. The signs read as follows. "Tours run 1/2 hourly. $5.25 admission. Eftpos unavailable." "If you think this is bad... you should see the back!"
On a walk around the city to catch up on what is happening May 29, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, w...
Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...
Demolition work on Christchurch's "distinctive" former civic building and the Front Runner store. On a walk around Christchurch May 9, 2013 New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department s...
Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...
Memorial design in the West has been explored in depth (Stevens and Franck, 2016; Williams, 2007), and for landscape architects it presents opportunities and challenges. However, there is little in the English language literature about memorial design in China. How have Chinese designers responded to the commemorative settings of war and disaster? This study will adopt the method of case study to analyse two of the most representative memorials in China: Nanjing Massacre Memorial Hall (war) and Tangshan Earthquake Memorial Hall (disaster). Both landscapes have undergone three or four renovations and extensions in the last four decades, demonstrating the practical effects of the Chinese landscape theory. These examples of responses to trauma through memorial landscape interventions are testimonies to the witnesses, victims, abusers, ordinary people, youth and the place where the tragedy took place. This study will explore the reconstruction and expansion of the two memorials under the background of China's policies on memorial landscapes in different periods, as well as their functions of each stage. The research will examine how existing Chinese memorial theories exhibit unique responses at different times in response to the sadness and needs experienced by different users. Key Words:memorial landscape; memorial language; victims; descriptive; architecture; experence; disaster; memorial hall; landscape development; Chinese memorial; war.
A poster created by Empowered Christchurch to advertise their submission to the CERA Draft Transition Recovery Plan on social media.The poster reads, "Submission. CERA Draft Transition Recovery Plan. 5. In your opinion, is there a better way to report on these recovery issues? Looking at the recovery from the perspective of the eastern suburbs, it is impossible to avoid thinking of phenomenon referred to as 'Disaster Capitalism' and considering the aspects that have already become evident in the recovery process. Loss of equity and quality of life, risk transfer and other substantial shifts are taking place. We suggest that a regular mini-census should be conducted through the remainder of the recovery at intervals of 6-12 months to monitor deprivation, insurance cover (or lack of it), mortgage, home equity, and rental status. If unexpected changes identified, investigation and correction measures should be implemented. We need a city that is driven by the people that live in it, and enabled by a bureaucracy that accepts and mitigates risks, rather than transferring them to the most vulnerable residents ."
Validation is an essential step to assess the applicability of simulated ground motions for utilization in engineering practice, and a comprehensive analysis should include both simple intensity measures (PGA, SA, etc), as well as the seismic response of a range of complex systems obtained by response history analysis. In order to enable a spectrum of complex structural systems to be considered in systematic validation of ground motion simulations in a routine fashion, an automated workflow was developed. Such a workflow enables validation of simulated ground motions in terms of different complex model responses by considering various ground motion sets and different ground motion simulation methods. The automated workflow converts the complex validation process into a routine one by providing a platform to perform the validation process promptly as a built-in process of simulation post-processing. As a case study, validation of simulated ground motions was investigated via the automated workflow by comparing the dynamic responses of three steel special moment frame (SMRF) subjected to the 40 observed and 40 simulated ground motions of 22 February 2011 Christchurch earthquake. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions can be used in code-based structural performance assessments in-place of, or in combination with, ensembles of recorded ground motions.
Within four weeks of the September 4 2010 Canterbury Earthquake a new, loosely-knit community group appeared in Christchurch under the banner of “Greening the Rubble.” The general aim of those who attended the first few meetings was to do something to help plug the holes that had already appeared or were likely to appear over the coming weeks in the city fabric with some temporary landscaping and planting projects. This article charts the first eighteen months of Greening the Rubble and places the initiative in a broader context to argue that although seismic events in Christchurch acted as a “call to palms,” so to speak, the city was already in need of some remedial greening. It concludes with a reflection on lessons learned to date by GTR and commentary on the likely issues ahead for this new mini-social-environmental movement in the context of a quake-affected and still quake-prone major New Zealand city. One of the key lessons for GTR and all of those involved in Christchurch recovery activities to date is that the city is still very much in the middle of the event and is to some extent a laboratory for seismic and agency management studies alike.
A video of a presentation by Dr Scott Miles during the Community Resilience Stream of the 2016 People in Disasters Conference. The presentation is titled, "A Community Wellbeing Centric Approach to Disaster Resilience".The abstract for this presentation reads as follows: A higher bar for advancing community disaster resilience can be set by conducting research and developing capacity-building initiatives that are based on understanding and monitoring community wellbeing. This presentation jumps off from this view, arguing that wellbeing is the most important concept for improving the disaster resilience of communities. The presentation uses examples from the 2010 and 2011 Canterbury earthquakes to illustrate the need and effectiveness of a wellbeing-centric approach. While wellbeing has been integrated in the Canterbury recovery process, community wellbeing and resilience need to guide research and planning. The presentation unpacks wellbeing in order to synthesize it with other concepts that are relevant to community disaster resilience. Conceptualizing wellbeing as either the opportunity for or achievement of affiliation, autonomy, health, material needs, satisfaction, and security is common and relatively accepted across non-disaster fields. These six variables can be systematically linked to fundamental elements of resilience. The wellbeing variables are subject to potential loss, recovery, and adaptation based on the empirically established ties to community identity, such as sense of place. Variables of community identity are what translate the disruption, damage, restoration, reconstruction, and reconfiguration of a community's different critical services and capital resources to different states of wellbeing across a community that has been impacted by a hazard event. With reference to empirical research and the Canterbury case study, the presentation integrates these insights into a robust framework to facilitate meeting the challenge of raising the standard of community disaster resilience research and capacity building through development of wellbeing-centric approaches.
A video of a presentation by Dr Erin Smith during the Community Resilience Stream of the 2016 People in Disasters Conference. The presentation is titled, "A Qualitative Study of Paramedic Duty to Treat During Disaster Response".The abstract for this presentation reads as follows: Disasters place unprecedented demands on emergency medical services and test paramedic personal commitment to the health care profession. Despite this challenge, legal guidelines, professional codes of ethics and ambulance service management guidelines are largely silent on the issue of professional obligations during disasters. They provide little to no guidance on what is expected of paramedics or how they ought to approach their duty to treat in the face of risk. This research explores how paramedics view their duty to treat during disasters. Reasons that may limit or override such a duty are examined. Understanding these issues is important in enabling paramedics to make informed and defensible decisions during disasters. The authors employed qualitative methods to gather Australian paramedic perspectives. Participants' views were analysed and organised according to three emerging themes: the scope of individual paramedic obligations, the role and obligations of ambulance services, and the broader ethical context. Our findings suggest that paramedic decisions around duty to treat will largely depend on their individual perception of risk and competing obligations. A reciprocal obligation is expected of paramedic employers. Ambulance services need to provide their employees with the best current information about risks in order to assist paramedics in making defensible decisions in difficult circumstances. Education plays a key role in providing paramedics with an understanding and appreciation of fundamental professional obligations by focusing attention on both the medical and ethical challenges involved with disaster response. Finally, codes of ethics might be useful, but ultimately paramedic decisions around professional obligations will largely depend on their individual risk assessment, perception of risk, and personal value systems.
Successful urban regeneration projects generate benefits that are realised over a much longer timeframe than normal market developments and benefits well beyond those that can be uplifted by a market developer. Consequently there is substantial evidence in the literature that successful place-making and urban regeneration projects are usually public-private partnerships and involve a funder, usually local or central government, willing to contribute ‘patient’ capital. Following the 2010 and 2011 earthquakes that devastated the centre of Christchurch, there was an urgent need to rebuild and revitalise the heart of the city, and increasing the number of people living in or near the city centre was seen as a key ingredient of that. In October 2010, an international competition was launched to design and build an Urban Village, a project intended to stimulate renewed residential development in the city. The competition attracted 58 entrants from around world, and in October 2013 the winning team was chosen from four finalists. However the team failed to secure sufficient finance, and in November 2015 the Government announced that the development would not proceed. The Government was unwilling or unable to recognise that an insistence on a pure market approach would not deliver the innovative sustainable village asked for in the competition brief, and failed to factor in the opportunity cost to government, local government, local businesses and the wider Christchurch community of delaying by many years the residential development of the eastern side of the city. As a result, the early vision of the vitality that a thriving residential neighbourhood would bring to the city has not yet been realised.
The suburb of New Brighton in Christchurch Aotearoa was once a booming retail sector until the end of its exclusivity to Saturday shopping in 1980 and the aftermath of the devastating 2011 Christchurch earthquake. The suburb of New Brighton was hit particularly hard and fell into economic collapse, partly brought on by the nature of its economic structure. This implosion created an urban crisis where people and businesses abandoned the suburb and its once-booming commercial economy. As a result, New Brighton has been left with the residue of abandoned infrastructure and commercial propaganda such as billboards, ATM machines, commercial facades, and shopping trolleys that as abandoned fragments, no longer contribute to culture, society and the economy. This design-led research investigation proposes to repurpose the broken objects that were left behind. By strategically selecting objects that are symbols of the root cause of the economic devastation, the repurposed and re-contextualised fragments will seek to allegorically expose the city’s destructive economic narrative, while providing a renewed sense of place identity for the people. This design-led thesis investigation argues that the seemingly innocuous icons of commercial industry, such as billboards, ATM machines, commercial facades, and shopping trolleys, are intended to act as lures to encourage people to spend money; ultimately, these urban and architectural lures can contribute to economic devastation. The aim of this investigation is to repurpose abandoned fragments of capitalist infrastructure in ways that can help to unveil new possibilities for a disrupted community and enhance their awareness of what led to the urban disruption. The thesis proposes to achieve this research aim by exploring three principal research objectives: 1) to assimilate and re-contextualise disconnected urban fragments into new architectural interventions; 2) to anthropomorphise these new interventions so that they are recognisable as architectural ‘inhabitants’, the storytellers of the urban context; and 3) to curate these new architectural interventions in ways that enable a community-scale allegorical and didactic experience to be recognised.
Natural hazards continue to have adverse effects on communities and households worldwide, accelerating research on proactively identifying and enhancing characteristics associated with resilience. Although resilience is often characterized as a return to normal, recent studies of postdisaster recovery have highlighted the ways in which new opportunities can emerge following disruption, challenging the status quo. Conversely, recovery and reconstruction may serve to reinforce preexisting social, institutional, and development pathways. Our understanding of these dynamics is limited however by the small number of practice examples, particularly for rural communities in developed nations. This study uses a social–ecological inventory to document the drivers, pathways, and mechanisms of resilience following a large-magnitude earthquake in Kaikōura, a coastal community in Aotearoa New Zealand. As part of the planning and implementation phase of a multiyear project, we used the tool as the basis for indepth and contextually sensitive analysis of rural resilience. Moreover, the deliberate application of social–ecological inventory was the first step in the research team reengaging with the community following the event. The inventory process provided an opportunity for research partners to share their stories and experiences and develop a shared understanding of changes that had taken place in the community. Results provide empirical insight into reactions to disruptive change associated with disasters. The inventory also informed the design of targeted research collaborations, established a platform for longer-term community engagement, and provides a baseline for assessing longitudinal changes in key resilience-related characteristics and community capacities. Findings suggest the utility of social–ecological inventory goes beyond natural resource management, and that it may be appropriate in a range of contexts where institutional, social, and economic restructuring have developed out of necessity in response to felt or anticipated external stressors.
Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.
On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.
The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.