Search

found 1867 results

Images, UC QuakeStudies

A photograph of the earthquake damage to the Iconic Bar and the former Christchurch City Council offices on Manchester Street. The outer walls of the Council offices and the top storey of Iconic have collapsed, exposing the insides of the buildings. The bricks and other rubble have been cleared from the footpath in front. USAR codes have been spray-painted next to the entrance of Iconic.

Images, UC QuakeStudies

Damaged workshops in the Red Bus depot on Fitzgerald Avenue. The brick walls have partially crumbled. In the background is the Cathedral of the Blessed Sacrament, with its dome partly deconstructed. The photographer comments, "This photo was taken recently on Fitzgerald Avenue. Again, it's amazing how close you can get to buildings that look like they are about to collapse. In the background, you can see that work has begun to remove the dome on top of the damaged Cathedral of he Blessed Sacrament".

Images, UC QuakeStudies

A photograph of the earthquake-damaged Our City O-Tautahi Building on the corner of Worcester Street and Oxford Terrace. Steel bracing has been placed against the building to secure the brick walls. The bracing is supported by large concrete blocks. Wire fences have also been placed around the bottom of the building as a cordon. Scaffolding has been erected around the tower to the right.

Images, UC QuakeStudies

Damaged workshops in the Red Bus depot on Fitzgerald Avenue. The brick walls have partially crumbled. In the background is the Cathedral of the Blessed Sacrament, with its dome partly deconstructed. The photographer comments, "This photo was taken recently on Fitzgerald Avenue. Again, it's amazing how close you can get to buildings that look like they are about to collapse. In the background, you can see that work has begun to remove the dome on top of the damaged Cathedral of he Blessed Sacrament".

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The neighbours behind us used the kayak to get in to their house - it's flooded by Dudley Creek which runs behind the block, plus major liquefaction. Our old garage provides a good spot to park it".

Images, eqnz.chch.2010

Known by the locals as the "Manager's House" of the large brick and tile works which was situated nearby. Established by the Austin brothers in 1863 the brickworks were named after the town of Farnley in Yorkshire England, from where the family had come. I remember the brickworks as a child and I think they were demolished in the 1970's. Very sa...

Images, eqnz.chch.2010

Known by the locals as the "Owner's House" of the large Farnley Brick and Tile Works which was situated nearby. Established by the Austin brothers in 1863 the brickworks were named after the town of Farnley in Yorkshire England, from where the family had come. I remember the brickworks as a child and I think they were demolished in the 1970's. V...

Images, UC QuakeStudies

Damage to Lyttelton following the 22 February 2011 earthquake. The fish and chip shop on London Street (centre) has a collapsed gable and awning. Bricks, plaster and wood are lying where they fell on the footpath, as well as the broken sign. To the left is the Lava Bar which suffered severe structural damage after the earthquake. To the right, the Coastal Living store can be seen which was open after the September earthquake but pulled down after February.

Images, eqnz.chch.2010

The base of the tower on the right of this picture has sunk about 25cm so that the lower course of bricks have disappeared below ground level. Meanwhile the other end of the building has sunk about 50cm splitting the building into thirds. The sand you can see is what came bubbling up out of the ground due to liquifaction. Unfortunately the build...

Images, eqnz.chch.2010

The base of the tower on the right of this picture has sunk about 25cm so that the lower course of bricks have disappeared below ground level. Meanwhile the other end of the building has sunk about 50cm splitting the building into thirds. The sand you can see is what came bubbling up out of the ground due to liquifaction. Unfortunately the build...

Videos, NZ On Screen

Chimney Book takes rubble from the Christchurch earthquake, and turns it into the building blocks of a film exploring life in the quake zone. Christchurch musician Blair Parkes took bricks from his chimney — destroyed in the 22 February 2011 aftershocks — painted a letter or symbol on each, then scanned them into his computer. Sound and word form the spine of the result, which is part diary, part experimental film. Parkes explores his experiences of living in Christchurch since the quake through words like 'dust', 'memory', 'place', and a question: 'is it over?'

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for the case of adhesive anchor connections than for the case of through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal foil sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes and a snapshot of the performed experimental program and the test results are presented herein. http://hdl.handle.net/2292/21050

Images, eqnz.chch.2010

A suburban "red zone" house from Velsheda Street (#11), Pacific Park, is finally cut in half and loaded ready for transport out and a future life somewhere else in the South Island, whether it be close by or way down south in Gore or Clinton (where a few have gone already). The house has been stripped of it's bricks and jacked up for over four m...

Images, eqnz.chch.2010

The base of the tower on the right of this picture has sunk about 25cm so that the lower course of bricks have disappeared below ground level. Meanwhile the other end of the building has sunk about 50cm splitting the building into thirds. The sand you can see is what came bubbling up out of the ground due to liquifaction. Unfortunately the build...

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The east and north walls and part of the upper floor have collapsed, tipping rubble and the contents of the rooms out onto the street. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants".

Images, UC QuakeStudies

A badly damaged house in Burwood. Parts of the house have moved in different directions, leaving walls and doors misaligned. The photographer comments, "Although this looks like an extreme wide angle shot it is actually a house tilted in every direction at the same time. The earthquake caused the ground to vibrate and compress so much that the sandy soil liquefied and caused the ground to collapse under this modern home".

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The tower and east end of the building have collapsed onto two parked cars. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants. The damaged cars were removed before the digger demolished the building".

Images, UC QuakeStudies

The clock tower of the former Railway Station, encased in plywood to prevent further damage. A banner sponsored by The Press hangs below the clock, covered with words which symbolise the September earthquake. The photographer comments, "After the September earthquake the clocked stopped at 04:35 and everyone campaigned to have this clock left as it was. At that time the building was believed to be OK. Two more earthquakes later and the possible memorial will probably end up like a lot of Christchurch's heritage buildings on a huge pile of stone and bricks in Bottle Lake Forest".

Images, UC QuakeStudies

Two images of a house, taken before and after the earthquakes. In the after photograph the chimneys are gone, a column supporting the car port has partly collapsed, windows are broken, and the previously neat lawn and driveway are overgrown. The photographer comments, "This was a house that I was selling up to the September 2010 earthquake in Christchurch. It was on Avonside Drive, which was an area that has been badly hit in every earthquake that has hit the area. In the September quake parts of the house moved in different directions and one of the upstairs doors had to be smashed open to release one of the sons from his bedroom. This occurred in the dark with numerous aftershocks shaking the house. Liquefaction poured up through the floor and flowed down the drive. Everyone got out OK, but soon after the house was red stickered meaning it was dangerous to enter. The house was looted many times even though there was constant police patrols. When the most violent earthquake occurred on 22 February 2012 both the tall heavy chimneys came crashing through into the living areas. Subsequent earthquakes and aftershocks have caused one of the brick fence pillars to fall and the front garage pillar to break up and twist. The family's troubles did not end there. They moved into the home of one of their parents and this mansion of a home was so badly affected by the February earthquake that no one could enter to collect any of their or their parents' belongings. They now own a new home, which they are fond of except when the ground shakes yet again. There has been to date 10,712 earthquakes and aftershocks since 4 September 2010".

Images, UC QuakeStudies

People walk and drive along Manchester Street shortly after the 22 February earthquake. Bricks from collapsed buildings litter the road. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones. Heading first along Manchester Street, buildings that were already heavily damaged were now completely written off".

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury earthquakes a detailed campaign of door to door assessments was conducted in a variety of areas of Christchurch to establish the earthquake performance of residential dwellings having masonry veneer as an external cladding attached to a lightweight timber framing system. Specifically, care was taken to include regions of Christchurch which experienced different levels of earthquake shaking in order to allow comparison between the performance of different systems and different shaking intensities. At the time of the inspections the buildings in the Christchurch region had been repeatedly subjected to large earthquakes, presenting an opportunity for insight into the seismic performance of masonry veneer cladding. In total just under 1100 residential dwellings were inspected throughout the wider Christchurch area, of which 24% were constructed using the older nail-on veneer tie system (prior to 1996) and 76% were constructed using screw fixed ties to comply with the new 1996 standards revision (post-1996), with 30% of all inspected houses being of two storey construction. Of the inspected dwellings 27% had some evidence of liquefaction, ground settlement or lateral spreading. Data such as damage level, damage type, crack widths, level of repair required and other parameters were collected during the survey. A description of the data collection processes and a snapshot of the analysis results are presented within. http://15ibmac.com/home/

Research papers, The University of Auckland Library

Following the 22 February 2011 Christchurch earthquake a comprehensive damage survey of the unreinforced masonry (URM) building stock of Christchurch city, New Zealand was undertaken. Because of the large number of aftershocks associated with both the 2011 Christchurch earthquake and the earlier 4 September 2010 Darfield earthquake, and the close proximity of their epicentres to Christchurch city, this earthquake sequence presented a unique opportunity to assess the performance of URM buildings and the various strengthening methods used in New Zealand to increase the performance of these buildings in earthquakes. Because of the extent of data that was collected, a decision was made to initially focus exclusively on the earthquake performance of URM buildings located in the central business district (CBD) of Christchurch city. The main objectives of the data collection exercise were to document building characteristics and any seismic strengthening methods encountered, and correlate these attributes with observed earthquake damage. In total 370 URM buildings in the CBD were surveyed. Of the surveyed buildings, 62% of all URM buildings had received some form of earthquake strengthening and there was clear evidence that installed earthquake strengthening techniques in general had led to reduced damage levels. The procedure used to collect and process information associated with earthquake damage, general analysis and interpretation of the available survey data for the 370 URM buildings, the performance of earthquake strengthening techniques, and the influence of earthquake strengthening levels on observed damage are reported within. http://15ibmac.com/home/

Images, UC QuakeStudies

People gather at the corner of Colombo and St Asaph Streets shortly after the 22 February earthquake. A building has collapsed, and bricks and rubble litter the street. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones. Heading first along Manchester Street, buildings that were already heavily damaged were now completely written off. We couldn't get much further down Manchester Street so eventually made it to Colombo Street".

Research papers, The University of Auckland Library

Case study unreinforced masonry (URM) buildings that were seismically retrofitted prior to the 2010/11 Canterbury earthquake sequence and exhibited successful performance during these earthquakes are presented herein. Selected buildings were divided into the following categories based on size and complexity: (1) simple, single storey box type buildings (i.e. electrical substations), (2) common and simple commercial buildings, and (3) large and complex clay brick and stone URM buildings. The retrofitted case study URM buildings were evaluated based on overall structural seismic performance as well as the categories of initial seismic design, heritage preservation, architectural appeal, and cost. Detailed observations of 4 representative case study buildings and a summary of findings are reported herein. http://db.nzsee.org.nz/2017/Orals.htm

Research papers, The University of Auckland Library

Following the magnitude 6.3 aftershock in Christchurch, New Zealand, on 22 February 2011, a number of researchers were sent to Christchurch as part of the New Zealand Natural Hazard Research Platform funded “Project Masonry” Recovery Project. Their goal was to document and interpret the damage to the masonry buildings and churches in the region. Approximately 650 unreinforced and retrofitted clay brick masonry buildings in the Christchurch area were surveyed for commonly occurring failure patterns and collapse mechanisms. The entire building stock of Christchurch, and in particular the unreinforced masonry building stock, is similar to that in the rest of New Zealand, Australia, and abroad, so the observations made here are relevant for the entire world.

Research papers, The University of Auckland Library

Unrestrained unreinforced clay brick masonry (URM) parapets are found atop a large number of vintage URM buildings. Parapets are typically non-structural cantilevered wall elements that form a fire barrier and in most cases form decorative and ornamental features of vintage URM buildings. Parapets are considered to be one of the most vulnerable elements that are prone to out-of-plane collapse when subjected to earthquake induced shaking. An in-depth analysis of the damage database collected following the 2010/2011 Canterbury earthquakes was performed to obtain information about the distribution, characteristics and observed performance of both the as-built and retrofitted parapets in the Christchurch region. Results, statistical interpretation and implications are presented herein. http://www.aees.org.au/downloads/conference-papers/2015-2/

Images, Alexander Turnbull Library

Text reads 'City's old chimneys are considered the no. 1 earthquake danger'. Below are several angry-looking chimneys which sing 'Chim chim-in-ey. Chim chim-in-ey, chim chim cher-oo! When the big shake's on - we're coming to get you!' Context - Invercargill City council building services manager Simon Tonkin has seen first-hand the massive damage falling chimneys inflicted on homes and nearby vehicles following the massive Christchurch quake, and says that Invercargill's old brick chimneys are the No1 danger to the city's residents and homes if a major earthquake strikes and should be removed if they are not being used. (Southland Times 6 April 2011) Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

A tribute taped to a window of a house on Tasman Place. The tribute reads, "Our red zoned house. When we bought you years ago, you looked a bit tired and sad, but overall you weren't too bad. We spruced you up with paint and love and asked for a blessing from above. The years went by, family and friends celebrations under your roof, your 'veggie' garden gave us kai. We felt safe within your wall, then one dreadful September night, the shaking earth made you fall. You tried with all your groaning might to keep us from harm. Because you were strongly built we held onto the door, while a wave of terror buckled the floor and outside the garden flooded with silt. Now you are near the end, sunken walls and windows bend. We say goodbye today and let you go, Our spirit and heart feels low. You are more than just mortar and brick. For us you were a gift, a safe haven where we once lived".

Research papers, The University of Auckland Library

Churches are an important part of New Zealand's historical and architectural heritage. Various earthquakes around the world have highlighted the significant seismic vulnerability of religious buildings, with the extensive damage that occurred to stone and clay-brick unreinforced masonry churches after the 2010-2011 Canterbury earthquakes emphasising the necessity to better understand this structural type. Consequently, a country-wide inventory of unreinforced masonry churches is here identified. After a bibliographic and archival investigation, and a 10 000 km field trip, it is estimated that currently 297 unreinforced masonry churches are present throughout New Zealand, excluding 12 churches demolished in Christchurch because of heavy damage sustained during the Canterbury earthquake sequence. The compiled database includes general information about the buildings, their architectural features and structural characteristics, and any architectural and structural transformations that have occurred in the past. Statistics about the occurrence of each feature are provided and preliminary interpretations of their role on seismic vulnerability are discussed. The list of identified churches is reported in annexes, supporting their identification and providing their address.

Research papers, The University of Auckland Library

Following the Christchurch earthquake of 22 February 2011 a number of researchers were sent to Christchurch, New Zealand to document the damage to masonry buildings as part of “Project Masonry”. Coordinated by the Universities of Auckland and Adelaide, researchers came from Australia, New Zealand, Canada, Italy, Portugal and the US. The types of masonry investigated were unreinforced clay brick masonry, unreinforced stone masonry, reinforced concrete masonry, residential masonry veneer and churches; masonry infill was not part of this study. This paper focuses on the progress of the unreinforced masonry (URM) component of Project Masonry. To date the research team has completed raw data collection on over 600 URM buildings in the Christchurch area. The results from this study will be extremely relevant to Australian cities since URM buildings in New Zealand are similar to those in Australia.