Search

found 1845 results

Research Papers, Lincoln University

Group case study report prepared for lecturers Ton Buhrs and Roy Montgomery by students of ERST 635 at Lincoln University, 2013.The New Zealand Government’s decision to establish a unitary authority in the Auckland Region has provided much of the context and impetus for this review of current governance arrangements in the Canterbury region, to determine whether or not they are optimal for taking the communities of greater Christchurch into the future. A number of local governance academics, as well as several respected political pundits, have prophesised that the Auckland ‘Super City’ reforms of 2009 will have serious implications and ramifications for local governance arrangements in other major cities, particularly Wellington and Christchurch. Wellington councils have already responded to the possibility of change by undertaking a series of reports on local governance arrangements, as well as a major review led by Sir Geoffrey Palmer, to investigate options for governance reform. Alongside these developments, the Christchurch earthquakes beginning in September 2010 have raised a myriad of new and complex governance issues, which may or may not be able to be addressed under the status quo, while the replacement of Regional Councillors’ with centrally-appointed Commissioners is suggestive of government dissatisfaction with current arrangements. With these things in mind, the research group has considered local government in Canterbury and the greater Christchurch area in the wider governance context. It does not limit discussion to only the structure of local government in Canterbury but rather, as the brief (Appendix 1) indicates, considers more broadly the relationship between central, regional, and local tiers of government, as well as the relationship between local government and local communities.

Research papers, University of Canterbury Library

This study followed two similarly affected, but socio-economically disparate suburbs as residents responded to and attempted to recover from the devastating 6.3 magnitude earthquake that struck Christchurch, New Zealand, on February 22, 2011. More specifically, it focuses on the role of local churches, community-based organisations (CBOs) and non-governmental organisations (NGOs), here referred to broadly as civil society, in meeting the immediate needs of local residents and assisting with the longer-term recovery of each neighbourhood. Despite considerable socioeconomic differences between the two neighbourhoods, civil society in both suburbs has been vital in addressing the needs of locals in the short and long term following the earthquake. Institutions were able to utilise local knowledge of both residents and the extent of damage in the area to a) provide a swifter local response than government or civil defence and then help direct the relief these agencies provided locally; b) set up central points for distribution of supplies and information where locals would naturally gather; c) take action on what were perceived to be unmet needs; and d) act as a way of bridging locals to a variety of material, informational, and emotional resources. However the findings also support literature which indicates that other factors are also important in understanding neighbourhood recovery and the role of civil society, including: local leadership; a shared, place-based identity; the type and form of civil society organizations; social capital; and neighbourhood- and household-level indicators of relative vulnerability and inequality. The intertwining of these various factors seems to influence how these neighbourhoods have coped with and taken steps in recovering from this disaster. It is recommended that future research be directed at developing a better understanding of how this occurs. It is suggested that a model similar to Yasui’s (2007) Community Vulnerability and Capacity model be developed as a useful way to approach future research in this area.

Research papers, University of Canterbury Library

Two projects are documented within this MEM Report: I. The first project examined what was learnt involving the critical infrastructure in the aftermath of natural disasters in the Canterbury region of New Zealand – the most prominent being the series of earthquakes between 2010 and 2011. The project identified several learning gaps, leading to recommendations for further investigations that could add significant value for the lifeline infrastructure community. II. Following the Lifeline Lesson Learnt Project, the Disaster Mitigation Guideline series was initiated with two booklets, one on Emergency Potable Water and a second on Emergency Sanitation. The key message from both projects is that we can and must learn from disasters. The projects described are part of the emergency management, and critical infrastructure learning cycles – presenting knowledge captured by others in a digestible format, enabling the lessons to be reapplied. Without these kinds of projects, there will be fewer opportunities to learn from other’s successes and failures when it comes to preparing for natural disasters.

Research Papers, Lincoln University

As far as suburbs with bad reputations go, Aranui in Christchurch often seems to dominate local public perceptions. High crime, high unemployment, low incomes, run-down state houses and uncared-for neighbourhoods have been the key words and phrases used over many decades. This reputation achieved national standing over the same period and in 2001 Aranui gained the dubious distinction of becoming the pilot project for the Labour Government’s state housing Community Renewal Programme initiated in 2001. It is common to read “Don’t buy or rent here” comments on websites and blogs advising prospective immigrants on where to live. One of the dispiriting moments in Aranui’s history came in September 2009 with the discovery of two bodies under the floorboards of a Hampshire Street property and the subsequent charge of double-homicide and conviction of local resident Jason Somerville for the murder of his wife Rebecca Chamberlain and neighbour Tisha Lowry.

Research papers, The University of Auckland Library

New Zealand's devastating Canterbury earthquakes provided an opportunity to examine the efficacy of existing regulations and policies relevant to seismic strengthening of vulnerable buildings. The mixed-methods approach adopted, comprising both qualitative and quantitative approaches, revealed that some of the provisions in these regulations pose as constraints to appropriate strengthening of earthquake-prone buildings. Those provisions include the current seismic design philosophy, lack of mandatory disclosure of seismic risks and ineffective timeframes for strengthening vulnerable buildings. Recommendations arising from these research findings and implications for pre-disaster mitigation for future earthquake and Canterbury's post-disaster reconstruction suggest: (1) a reappraisal of the requirements for earthquake engineering design and construction, (2) a review and realignment of all regulatory frameworks relevant to earthquake risk mitigation, and (3) the need to develop a national programme necessary to achieve consistent mitigation efforts across the country. These recommendations are important in order to present a robust framework where New Zealand communities such as Christchurch can gradually recover after a major earthquake disaster, while planning for pre-disaster mitigation against future earthquakes. AM - Accepted Manuscript

Research papers, University of Canterbury Library

The Civil Defense understanding of the role of radio in disaster tends to focus on its value in providing essential information during and after the event. However this role is compromised when a station’s premises are destroyed, or rendered inaccessible by official cordons. The Radio Quake study examines how radio stations in Christchurch managed to resume broadcasting in the aftermath of the earthquake of February 22, 2011. In New Zealand’s heavily networked and commercialised radio environment there is a significant disparity between networked and independent stations’ broadcast commitments and resourcing. All Christchurch radio broadcasters were forced to improvise new locations, complex technical workarounds, and responsive styles of broadcasting after the February 22 earthquake, but the need to restore, or maintain, a full on air presence after the earthquake, rested entirely on often financially tenuous, locally owned and staffed independent radio: student, Iwi, community access, and local commercial stations. This paper will explore the resourcefulness and resilience of broadcasters riding out the aftershocks in hotels, motels, bedrooms, and a horse truck, using digital technologies in new ways to reimagine the practice of radio in Christchurch.

Research papers, University of Canterbury Library

During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.

Research papers, The University of Auckland Library

Territorial authorities in New Zealand are responding to regulatory and market forces in the wake of the 2011 Christchurch earthquake to assess and retrofit buildings determined to be particularly vulnerable to earthquakes. Pending legislation may shorten the permissible timeframes on such seismic improvement programmes, but Auckland Council’s Property Department is already engaging in a proactive effort to assess its portfolio of approximately 3500 buildings, prioritise these assets for retrofit, and forecast construction costs for improvements. Within the programme structure, the following varied and often competing factors must be accommodated: * The council’s legal, fiscal, and ethical obligations to the people of Auckland per building regulations, health and safety protocols, and economic growth and urban development planning strategies; * The council’s functional priorities for service delivery; * Varied and numerous stakeholders across the largest territorial region in New Zealand in both population and landmass; * Heritage preservation and community and cultural values; and * Auckland’s prominent economic role in New Zealand’s economy which requires Auckland’s continued economic production post-disaster. Identifying those buildings most at risk to an earthquake in such a large and varied portfolio has warranted a rapid field assessment programme supplemented by strategically chosen detailed assessments. Furthermore, Auckland Council will benefit greatly in time and resources by choosing retrofit solutions, techniques, and technologies applicable to a large number of buildings with similar configurations and materials. From a research perspective, the number and variety of buildings within the council’s property portfolio will provide valuable data for risk modellers on building typologies in Auckland, which are expected to be fairly representative of the New Zealand building stock as a whole.

Research papers, The University of Auckland Library

Whole document is available to authenticated members of The University of Auckland until Feb. 2014. The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are often reluctant to adopt mitigation measures required to reduce earthquake losses. The magnitude of building collapses from the recent Christchurch earthquakes in New Zealand shows that owners of earthquake prone buildings (EPBs) are not adopting appropriate risk mitigation measures in their buildings. Owners of EPBs are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to seismic risks. This research investigates how to increase the likelihood of building owners undertaking appropriate mitigation actions that will reduce their vulnerability to earthquake disaster. A sequential two-phase mixed methods approach was adopted for the research investigation. Multiple case studies approach was adopted in the first qualitative phase, followed by the second quantitative research phase that includes the development and testing of a framework. The research findings reveal four categories of critical obstacles to building owners‘ decision to adopt earthquake loss prevention measures. These obstacles include perception, sociological, economic and institutional impediments. Intrinsic and extrinsic interventions are proposed as incentives for overcoming these barriers. The intrinsic motivators include using information communication networks such as mass media, policy entrepreneurs and community engagement in risk mitigation. Extrinsic motivators comprise the use of four groups of incentives namely; financial, regulatory, technological and property market incentives. These intrinsic and extrinsic interventions are essential for enhancing property owners‘ decisions to voluntarily adopt appropriate earthquake mitigation measures. The study concludes by providing specific recommendations that earthquake risk mitigation managers, city councils and stakeholders involved in risk mitigation in New Zealand and other seismic risk vulnerable countries could consider in earthquake risk management. Local authorities could adopt the framework developed in this study to demonstrate a combination of incentives and motivators that yield best-valued outcomes. Consequently, actions can be more specific and outcomes more effective. The implementation of these recommendations could offer greater reasons for the stakeholders and public to invest in building New Zealand‘s built environment resilience to earthquake disasters.

Research papers, University of Canterbury Library

The magnitude 6.2 Christchurch earthquake struck the city of Christchurch at 12:51pm on February 22, 2011. The earthquake caused 186 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to lifeline networks and health care facilities. Critical facilities, such as public and private hospitals, government, non-government and private emergency services, physicians’ offices, clinics and others were severely impacted by this seismic event. Despite these challenges many systems were able to adapt and cope. This thesis presents the physical and functional impact of the Christchurch earthquake on the regional public healthcare system by analysing how it adapted to respond to the emergency and continued to provide health services. Firstly, it assesses the seismic performance of the facilities, mechanical and medical equipment, building contents, internal services and back-up resources. Secondly, it investigates the reduction of functionality for clinical and non-clinical services, induced by the structural and non-structural damage. Thirdly it assesses the impact on single facilities and the redundancy of the health system as a whole following damage to the road, power, water, and wastewater networks. Finally, it assesses the healthcare network's ability to operate under reduced and surged conditions. The effectiveness of a variety of seismic vulnerability preparedness and reduction methods are critically reviewed by comparing the observed performances with the predicted outcomes of the seismic vulnerability and disaster preparedness models. Original methodology is proposed in the thesis which was generated by adapting and building on existing methods. The methodology can be used to predict the geographical distribution of functional loss, the residual capacity and the patient transfer travel time for hospital networks following earthquakes. The methodology is used to define the factors which contributed to the overall resilence of the Canterbury hospital network and the areas which decreased the resilence. The results show that the factors which contributed to the resilence, as well as the factors which caused damage and functionality loss were difficult to foresee and plan for. The non-structural damage to utilities and suspended ceilings was far more disruptive to the provision of healthcare than the minor structural damage to buildings. The physical damage to the healthcare network reduced the capacity, which has further strained a health care system already under pressure. Providing the already high rate of occupancy prior to the Christchurch earthquake the Canterbury healthcare network has still provided adequate healthcare to the community.

Audio, Radio New Zealand

Rt Hon WINSTON PETERS to the Prime Minister: Does he stand by all his statements? DAVID SHEARER to the Prime Minister: Does he stand by all his statements? PAUL GOLDSMITH to the Minister of Finance: What reports has he received on business and economic conditions in New Zealand? Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his answer to written question 07314 (2013) when he said: "The inquiry team, itself, did not seek permission from Peter Dunne before it obtained his email logs" and does he think it should have? SIMON O'CONNOR to the Minister of Transport: How will the Government progress the delivery of the next generation of transport projects for Auckland? Hon DAVID PARKER to the Minister of Finance: Are the proceeds from selling power companies and other assets being used to pay down debt, to build schools and hospitals, to fund irrigation projects, to rebuild Christchurch, or to fund Auckland transport projects? IAN McKELVIE to the Minister of Police: What updates has she received on how Police are using technology to prevent crime? JACINDA ARDERN to the Minister of Finance: Does he agree with The Economist that "inequality is one of the biggest social, economic and political challenges of our time"; if so, what is his Government doing to address the fact that New Zealand now has the widest income gap since detailed records began? PAUL FOSTER-BELL to the Minister of Justice: How is the Government improving its justice and other services to local communities? Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: When was he first made aware of the September IANZ report which warned the Christchurch City Council that "Continued accreditation beyond May 2013 will depend on a satisfactory outcome of that assessment" and was he advised by CERA or a Ministerial colleague? JONATHAN YOUNG to the Minister of Broadcasting: What progress has been made on the regional rollout of the digital switchover for New Zealand television viewers? GARETH HUGHES to the Minister of Conservation: Will he implement the recommendations to protect Maui's dolphins contained in the report of this year's meeting of the International Whaling Commission Scientific Committee; if not, why not Questions to Members JACINDA ARDERN to the Chairperson of the Social Services Committee: On which date and time, if any, did he receive the Minister for Social Development's written responses to the pre-hearing questions for the 2013/14 Estimates review for Vote Social Development? JACINDA ARDERN to the Chairperson of the Social Services Committee: On what date did the Minister for Social Development appear before the Committee to answer questions regarding the 2013/14 Estimates review for Vote Social Development? Dr MEGAN WOODS to the Chairperson of the Education and Science Committee: Did he consider inviting the Minister to appear again to answer questions around responses to questions on the 2013/14 Estimates for Vote Education, if so, did he receive any advice about the Minister's willingness to appear again?

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.

Research papers, University of Canterbury Library

Coastal and river environments are exposed to a number of natural hazards that have the potential to negatively affect both human and natural environments. The purpose of this research is to explain that significant vulnerabilities to seismic hazards exist within coastal and river environments and that coasts and rivers, past and present, have played as significant a role as seismic, engineering or socio-economic factors in determining the impacts and recovery patterns of a city following a seismic hazard event. An interdisciplinary approach was used to investigate the vulnerability of coastal and river areas in the city of Christchurch, New Zealand, following the Canterbury Earthquake Sequence, which began on the 4th of September 2010. This information was used to identify the characteristics of coasts and rivers that make them more susceptible to earthquake induced hazards including liquefaction, lateral spreading, flooding, landslides and rock falls. The findings of this research are applicable to similar coastal and river environments elsewhere in the world where seismic hazards are also of significant concern. An interdisciplinary approach was used to document and analyse the coastal and river related effects of the Canterbury earthquake sequence on Christchurch city in order to derive transferable lessons that can be used to design less vulnerable urban communities and help to predict seismic vulnerabilities in other New Zealand and international urban coastal and river environments for the future. Methods used to document past and present features and earthquake impacts on coasts and rivers in Christchurch included using maps derived from Geographical Information Systems (GIS), photographs, analysis of interviews from coastal, river and engineering experts, and analysis of secondary data on seismicity, liquefaction potential, geology, and planning statutes. The Canterbury earthquake sequence had a significant effect on Christchurch, particularly around rivers and the coast. This was due to the susceptibility of rivers to lateral spreading and the susceptibility of the eastern Christchurch and estuarine environments to liquefaction. The collapse of river banks and the extensive cracking, tilting and subsidence that accompanied liquefaction, lateral spreading and rock falls caused damage to homes, roads, bridges and lifelines. This consequently blocked transportation routes, interrupted electricity and water lines, and damaged structures built in their path. This study found that there are a number of physical features of coastal and river environments from the past and the present that have induced vulnerabilities to earthquake hazards. The types of sediments found beneath eastern Christchurch are unconsolidated fine sands, silts, peats and gravels. Together with the high water tables located beneath the city, these deposits made the area particularly susceptible to liquefaction and liquefaction-induced lateral spreading, when an earthquake of sufficient size shook the ground. It was both past and present coastal and river processes that deposited the types of sediments that are easily liquefied during an earthquake. Eastern Christchurch was once a coastal and marine environment 6000 years ago when the shoreline reached about 6 km inland of its present day location, which deposited fine sand and silts over this area. The region was also exposed to large braided rivers and smaller spring fed rivers, both of which have laid down further fine sediments over the following thousands of years. A significant finding of this study is the recognition that the Canterbury earthquake sequence has exacerbated existing coastal and river hazards and that assessments and monitoring of these changes will be an important component of Christchurch’s future resilience to natural hazards. In addition, patterns of recovery following the Canterbury earthquakes are highlighted to show that coasts and rivers are again vulnerable to earthquakes through their ability to recovery. This city’s capacity to incorporate resilience into the recovery efforts is also highlighted in this study. Coastal and river areas have underlying physical characteristics that make them increasingly vulnerable to the effects of earthquake hazards, which have not typically been perceived as a ‘coastal’ or ‘river’ hazard. These findings enhance scientific and management understanding of the effects that earthquakes can have on coastal and river environments, an area of research that has had modest consideration to date. This understanding is important from a coastal and river hazard management perspective as concerns for increased human development around coastlines and river margins, with a high seismic risk, continue to grow.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are

Research Papers, Lincoln University

Mitigating the cascade of environmental damage caused by the movement of excess reactive nitrogen (N) from land to sea is currently limited by difficulties in precisely and accurately measuring N fluxes due to variable rates of attenuation (denitrification) during transport. This thesis develops the use of the natural abundance isotopic composition of nitrate (δ15N and δ18O of NO₃-) to integrate the spatialtemporal variability inherent to denitrification, creating an empirical framework for evaluating attenuation during land to water NO₃- transfers. This technique is based on the knowledge that denitrifiers kinetically discriminate against 'heavy' forms of both N and oxygen (O), creating a parallel enrichment in isotopes of both species as the reaction progresses. This discrimination can be quantitatively related to NO₃- attenuation by isotopic enrichment factors (εdenit). However, while these principles are understood, use of NO₃- isotopes to quantify denitrification fluxes in non-marine environments has been limited by, 1) poor understanding of εdenit variability, and, 2) difficulty in distinguishing the extent of mixing of isotopically distinct sources from the imprint of denitrification. Through a combination of critical literature analysis, mathematical modelling, mesocosm to field scale experiments, and empirical studies on two river systems over distance and time, these short comings are parametrised and a template for future NO₃- isotope based attenuation measurements outlined. Published εdenit values (n = 169) are collated in the literature analysis presented in Chapter 2. By evaluating these values in the context of known controllers on the denitrification process, it is found that the magnitude of εdenit, for both δ15N and δ18O, is controlled by, 1) biology, 2) mode of transport through the denitrifying zone (diffusion v. advection), and, 3) nitrification (spatial-temporal distance between nitrification and denitrification). Based on the outcomes of this synthesis, the impact of the three factors identified as controlling εdenit are quantified in the context of freshwater systems by combining simple mathematical modelling and lab incubation studies (comparison of natural variation in biological versus physical expression). Biologically-defined εdenit, measured in sediments collected from four sites along a temperate stream and from three tropical submerged paddy fields, varied from -3‰ to -28‰ depending on the site’s antecedent carbon content. Following diffusive transport to aerobic surface water, εdenit was found to become more homogeneous, but also lower, with the strength of the effect controlled primarily by diffusive distance and the rate of denitrification in the sediments. I conclude that, given the variability in fractionation dynamics at all levels, applying a range of εdenit from -2‰ to -10‰ provides more accurate measurements of attenuation than attempting to establish a site-specific value. Applying this understanding of denitrification's fractionation dynamics, four field studies were conducted to measure denitrification/ NO₃- attenuation across diverse terrestrial → freshwater systems. The development of NO₃- isotopic signatures (i.e., the impact of nitrification, biological N fixation, and ammonia volatilisation on the isotopic 'imprint' of denitrification) were evaluated within two key agricultural regions: New Zealand grazed pastures (Chapter 4) and Philippine lowland submerged rice production (Chapter 5). By measuring the isotopic composition of soil ammonium, NO₃- and volatilised ammonia following the bovine urine deposition, it was determined that the isotopic composition of NO₃ - leached from grazed pastures is defined by the balance between nitrification and denitrification, not ammonia volatilisation. Consequently, NO₃- created within pasture systems was predicted to range from +10‰ (δ15N)and -0.9‰ (δ18O) for non-fertilised fields (N limited) to -3‰ (δ15N) and +2‰ (δ18O) for grazed fertilised fields (N saturated). Denitrification was also the dominant determinant of NO₃- signatures in the Philippine rice paddy. Using a site-specific εdenit for the paddy, N inputs versus attenuation were able to be calculated, revealing that >50% of available N in the top 10 cm of soil was denitrified during land preparation, and >80% of available N by two weeks post-transplanting. Intriguingly, this denitrification was driven by rapid NO₃- production via nitrification of newly mineralised N during land preparation activities. Building on the relevant range of εdenit established in Chapters 2 and 3, as well as the soil-zone confirmation that denitrification was the primary determinant of NO₃- isotopic composition, two long-term longitudinal river studies were conducted to assess attenuation during transport. In Chapter 6, impact and recovery dynamics in an urban stream were assessed over six months along a longitudinal impact gradient using measurements of NO₃- dual isotopes, biological populations, and stream chemistry. Within 10 days of the catastrophic Christchurch earthquake, dissolved oxygen in the lowest reaches was <1 mg l⁻¹, in-stream denitrification accelerated (attenuating 40-80% of sewage N), microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. To test the strength of this method for tackling the diffuse, chronic N loading of streams in agricultural regions, two years of longitudinal measurements of NO₃- isotopes were collected. Attenuation was negatively correlated with NO₃- concentration, and was highly dependent on rainfall: 93% of calculated attenuation (20 kg NO₃--N ha⁻¹ y⁻¹) occurred within 48 h of rainfall. The results of these studies demonstrate the power of intense measurements of NO₃- stable isotope for distinguishing temporal and spatial trends in NO₃ - loss pathways, and potentially allow for improved catchment-scale management of agricultural intensification. Overall this work now provides a more cohesive understanding for expanding the use of NO₃- isotopes measurements to generate accurate understandings of the controls on N losses. This information is becoming increasingly important to predict ecosystem response to future changes, such the increasing agricultural intensity needed to meet global food demand, which is occurring synergistically with unpredictable global climate change.