![](https://live.staticflickr.com/5210/5376880760_a1f339a7e9_m.jpg)
In the aftermath of the 2010-2011 Canterbury earthquakes in New Zealand, the residual capacity and reparability of damaged reinforced concrete (RC) structures was an issue pertinent to building owners, insurers, and structural engineers. Three precast RC moment-resisting frame specimens were extracted during the demolition of the Clarendon Tower in Christchurch after sustaining earthquake damage. These specimens were subjected to quasi-static cyclic testing as part of a research program to determine the reparability of the building. It was concluded that the precast RC frames were able to be repaired and retrofitted to an enhanced strength capacity with no observed reduction in displacement capacity, although the frames with “shear-ductile” detailing exhibited less displacement ductility capacity and energy dissipation capacity than the more conventionally detailed RC frames. Furthermore, the cyclic test results from the earthquake-damaged RC frames were used to verify the predicted inelastic demands applied to the specimens during the 2010-2011 Canterbury earthquakes. https://www.concrete.org/publications/acistructuraljournal.aspx
A cafe that was damaged severely in the earthquake. The front wall of the top storey has crumbled onto the street, crushing a car. Wire fencing and road cones have been used to create a cordon around the buildings.
A photograph of signs on a wall in the Christchurch Art Gallery. The signs read, "Final media trip to the CTV building, 15:00 hours, media opportunity with National Controller and rescue services. This is the last scheduled media hour into the red zone", "Media Briefings, Tuesday 8 March: 10:30 hours, Wednesday 9 March: 15:00 hours, in auditorium" and "Please switch off your cell phones before entering media briefings. Thank you". There is also a diagram of the first and ground floor of the art gallery. The Christchurch Art Gallery served as the temporary Civil Defence headquarters after the 22 February 2011 earthquake.
Civil Defence staff conferring at their headquarters in the Christchurch Art Gallery during the immediate aftermath of the 22 February earthquake. On the back wall maps of the city on which areas of importance have been marked with stickers and marker pens can be seen.
Labour Party leader Phil Goff speaking to members of the Student Volunteer Army in the UCSA car park outside the UCSA's "Big Top" tent. The tent was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake. Behind them members of the Student Volunteer Army are assembling wheelbarrows which will be used to clear liquefaction from Christchurch properties.
A collection of shovels from the Student Volunteer Army in the car park of the USCA. The shovels have been returned by students after a day of clearing liquefaction from Christchurch properties. Behind them the UCSA's "Big Top" tent can be seen, which was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake.
A photograph of a portaloo outside a residential property in Christchurch. After the 22 February 2011 earthquake, many houses had no running water and were forced to use chemical toilets or portaloos placed along the street. There is flooding and liquefaction on the street in the foreground. Liquefaction silt has been piled on the side of the road and a road cone placed in front.
A collection of wheelbarrows from the Student Volunteer Army in the car park of the USCA. The wheelbarrows have been returned by students after a day of clearing liquefaction from Christchurch properties. Behind them the UCSA's "Big Top" tent can be seen, which was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake.
A member of the Los Angeles County Fire Department Search and Rescue Team, talking to a New Zealand Police Officer in Latimer Square. In the background is a wire fence with Search and Rescue Team equipment tied to it. After the 22 February 2011 earthquake, emergency service agencies set up their headquarters in Latimer Square.
A member of the Los Angeles County Fire Department Search and Rescue Team, talking to a New Zealand Police Officer in Latimer Square. In the background is a wire fence with Search and Rescue Team equipment tied to it. After the 22 February 2011 earthquake, emergency service agencies set up their headquarters in Latimer Square.
Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. Also, existing methods do not quantify appropriately the influence on liquefaction resistance of soil fabric and structure, which are unique to a specific depositional environment. This study looks at the influence of fines content, soil fabric (i.e. arrangement of soil particles) and structure (e.g. layering, segregation) on the undrained cyclic behaviour and liquefaction resistance of fines-containing sandy soils from Christchurch using Direct Simple Shear (DSS) tests on soil specimens reconstituted in the laboratory with the water sedimentation technique. The poster describes experimental procedures and presents early test results on two sands retrieved at two different sites in Christchurch.
This paper shows an understanding of the availability of resources in post-disaster reconstruction and recovery in Christchurch, New Zealand following its September 4, 2010 and February 22, 2011 earthquakes. Overseas experience in recovery demonstrates how delays and additional costs may incur if the availability of resources is not aligned with the reconstruction needs. In the case of reconstruction following Christchurch earthquakes, access to normal resource levels will be insufficient. An on-line questionnaire survey, combined with in-depth interviews was used to collect data from the construction professionals that had been participated in the post-earthquake reconstruction. The study identified the resources that are subject to short supply and resourcing challenges that are currently faced by the construction industry. There was a varied degree of impacts felt by the surveyed organisations from resource shortages. Resource pressures were primarily concentrated on human resources associated with structural, architectural and land issues. The challenges that may continue playing out in the longer-term reconstruction of Christchurch include limited capacity of the construction industry, competition for skills among residential, infrastructure and commercial sectors, and uncertainties with respect to decision making. Findings provide implications informing the ongoing recovery and rebuild in New Zealand. http://www.iiirr.ucalgary.ca/Conference-2012
These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.
The author followed five primary (elementary) schools over three years as they responded to and began to recover from the 2010–2011 earthquakes in and around the city of Christchurch in the Canterbury region of New Zealand. The purpose was to capture the stories for the schools themselves, their communities, and for New Zealand’s historical records. From the wider study, data from the qualitative interviews highlighted themes such as children’s responses or the changing roles of principals and teachers. The theme discussed in this article, however, is the role that schools played in the provision of facilities and services to meet (a) physical needs (food, water, shelter, and safety); and (b) emotional, social, and psychological needs (communication, emotional support, psychological counseling, and social cohesion)—both for themselves and their wider communities. The role schools played is examined across the immediate, short-, medium-, and long-term response periods before being discussed through a social bonding theoretical lens. The article concludes by recommending stronger engagement with schools when considering disaster policy, planning, and preparation http://www.schoolcommunitynetwork.org/SCJ.aspx
Background Liquefaction induced land damage has been identified in more than 13 notable New Zealand earthquakes within the past 150 years, as presented on the timeline below. Following the 2010-2011 Canterbury Earthquake Sequence (CES), the consequences of liquefaction were witnessed first-hand in the city of Christchurch and as a result the demand for understanding this phenomenon was heightened. Government, local councils, insurers and many other stakeholders are now looking to research and understand their exposure to this natural hazard.
This study explores the nature of smaller businesses’ resilience following two major earthquakes that severely disrupted their place of doing business. Data from the owners of ten smaller businesses are qualitative and longitudinal, spanning the period 2011 through 2018, providing first-hand narrative accounts of their responses in the earthquakes’ aftermath. All ten owners showed some individual resilience; six businesses survived through to 2018, of which three have recovered strongly. All three owned their premises; operated business-tobusiness models; and were able to adapt and continue to follow path-extension strategies. All the other businesses had direct business-to-customer models operating from leased premises, typically in major retail malls. Four eventually recognised path-exhaustion at different times and so did not survive through to 2018. We conclude however that post-disaster recovery is best explained in terms of business model resilience. Even the most resilient of individual owners will struggle to survive if their business model is either not resilient or cannot be made so. Individual resilience is necessary but not sufficient.
A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.
A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.
A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.
The On-Site Operations Coordination Centre (OSOCC) in Latimer Square. After the 22 February 2011 earthquake, emergency service agencies set up their headquarters in Latimer Square. The OSOCC is set up by the United Nations Emergency Relief Coordinator. It helps to coordinate the local emergency response as well as advocate for humanitarian issue in political bodies such as the United National Security Council.
The Canterbury earthquake sequence of 2010-2011 wrought ruptures in not only the physical landscape of Canterbury and Christchurch’s material form, but also in its social, economic, and political fabrics and the lives of Christchurch inhabitants. In the years that followed, the widespread demolition of the CBD that followed the earthquakes produced a bleak landscape of grey rubble punctuated by damaged, abandoned buildings. It was into this post-earthquake landscape that Gap Filler and other ‘transitional’ organisations inserted playful, creative, experimental projects to bring life and energy back into the CBD. This thesis examines those interventions and the development of the ‘Transitional Movement’ between July 2013 and June 2015 via the methods of walking interviews and participant observation. This critical period in Christchurch’s recovery serves as an example of what happens when do-it-yourself (DIY) urbanism is done at scale across the CBD and what urban experimentation can offer city-making. Through an understanding of space as produced, informed by Lefebvre’s thinking, I explore how these creative urban interventions manifested a different temporality to orthodox planning and demonstrate how the ‘soft’ politics of these interventions contain the potential for gentrification and also a more radical politics of the city, by creating an opening space for difference.
Terminus calving of icebergs is a common mass-loss mechanism from water-terminating glaciers globally, including the lake-calving glaciers in New Zealand’s central Southern Alps. Calving rates can increase dramatically in response to increases in ice velocity and/or retreat of the glacier margin. Here, we describe a large calving event (c. 4.5 × 106 m3) observed at Tasman Glacier, which initiated around 30 min after the MW 6.2 Christchurch earthquake of 22 February 2011. The volume of this calving event was equalled or exceeded only once in a subsequent 13-month-long study. While the temporal association with the earthquake remains intriguing, the effects of any preconditioning factors remain unclear.
University of Canterbury Vice-Chancellor Rod Carr addressing a local musician inside the UCSA's "Big Top" tent. The tent was erected in the UCSA car park to provide support for students in the aftermath of the 22 February 2011 earthquake. The audience is made up of students who have spent the day clearing liquefaction from Christchurch properties as part of the Student Volunteer Army.
University of Canterbury Vice-Chancellor Rod Carr conferring with former Chancellor Rex Williams, inside the UCSA's "Big Top" tent. The tent was erected in the UCSA car park to provide support for students in the aftermath of the 22 February 2011 earthquake. Around them students have gathered to watch a local musician play. The student have spent the day clearing liquefaction from Christchurch properties as part of the Student Volunteer Army.
The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.
Damage to buildings along Norwich Quay in Lyttelton. To the left is the Lyttelton Hotel with a crumbled top. Bricks have fallen on the awning and all along the footpath. To the right is a cafe that was damaged severely in the earthquake. The front wall of the top storey has crumbled onto the street, crushing a car. Wire fencing and road cones have been used to create a cordon around the buildings.
During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.
Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091
Motivation This poster aims to present fragility functions for pipelines buried in liquefaction-prone soils. Existing fragility models used to quantify losses can be based on old data or use complex metrics. Addressing these issues, the proposed functions are based on the Christchurch network and soil and utilizes the Canterbury earthquake sequence (CES) data, partially represented in Figure 1. Figure 1 (a) presents the pipe failure dataset, which describes the date, location and pipe on which failures occurred. Figure 1 (b) shows the simulated ground motion intensity median of the 22nd February 2011 earthquake. To develop the model, the network and soil characteristics have also been utilized.
An earthquake-damaged road in north-east Christchurch. The manhole in the centre of the road has risen and a road cone has been placed in the centre to warn road users. Residents have piled liquefaction from their properties on the side of the road where it will be collection by road maintenance contractors.