Search

found 3636 results

Images, eqnz.chch.2010

Demolition of Robertson's Bakery building, Victoria Street, Christchurch. The Chandelier rescue ... Walking into work I saw the building I always wanted to buy (and run as a bookshop, perfumery, shoe shop) - the old Robertson's Bakery getting demolished. But the bigass digger gently reached into the wreckage and saved this chandelier, bringing...

Audio, Radio New Zealand

After a damning report into the CTV building, how many other Christchurch buildings had faults when the earthquake struck? Police investigate the tragic death of a five year old and when so many businesses are struggling, how did the country's big banks increase profits by a quarter?

Audio, Radio New Zealand

Strong aftershocks felt in Canterbury, Quake firms to seek government wage subsidy, More services, access to buildings being restored in Christchurch, Minister for Earthquake Recovery discusses plans, Heavy rain causes flooding and road closures in Lower North Island, Building codes minimised quake's injuries and damage, Glass supply freezes as Christchurch companies clean up.

Audio, Radio New Zealand

The Royal Commission into the Canterbury Earthquakes has heard evidence questioning the measure used to judge how resistant a building is to earthquake damage. It's come on the second day of hearings into why unreinforced masonry buildings collapsed in Christchurch during the February 22nd earthquake, killing 40 people.

Research papers, University of Canterbury Library

Buildings subject to earthquake shaking will tend to move not only horizontally but also rotate in plan. In-plan rotation is known as “building torsion” and it may occur for a variety of reasons, including stiffness and strength eccentricity and/or torsional effects from ground motions. Methods to consider torsion in structural design standards generally involve analysis of the structure in its elastic state. This is despite the fact that the structural elements can yield, thereby significantly altering the building response and the structural element demands. If demands become too large, the structure may collapse. While a number of studies have been conducted into the behavior of structures considering inelastic building torsion, there appears to be no consensus that one method is better than another and as a result, provisions within current design standards have not adopted recent proposals in the literature. However, the Canterbury Earthquakes Royal Commission recently made the recommendation that provisions to account for inelastic torsional response of buildings be introduced within New Zealand building standards. Consequently, this study examines how and to what extent the torsional response due to system eccentricity may affect the seismic performance of a building and considers what a simple design method should account for. It is concluded that new methods should be simple, be applicable to both the elastic and inelastic range of response, consider bidirectional excitation and include guidance for multi-story systems.

Research papers, University of Canterbury Library

The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timberframed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plane. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plane) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.

Images, eqnz.chch.2010

One of the most beautiful pieces of wall art (added to the blank walls after buildings were demolished following the earthquakes) in Christchurch, is now being hidden by a new building in front of it. www.flickr.com/photos/johnstewartnz/15499321681/in/...