Search

found 157 results

Research Papers, Lincoln University

On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.

Research papers, Victoria University of Wellington

Christchurch was struck by a 6.3 magnitude earthquake on the 22 February 2011. The quake devastated the city, taking lives and causing widespread damage to the inner city and suburban homes. The central city lost over half its buildings and over 7000 homes were condemned throughout Christchurch. The loss of such a great number of homes has created the requirement for new housing to replace those that were lost. Many of which were located in the eastern, less affluent, suburbs.  The response to the housing shortage is the planned creation of large scale subdivisions on the outskirts of the city. Whilst this provides the required housing it creates additional sprawl to a city that does not need it. The extension of Christchurch’s existing suburban sprawl puts pressure on roading and pushes residents further out of the city, creating a disconnection between them.  Christchurch’s central city had a very small residential population prior to the earthquakes with very few options for dense inner city living. The proposed rebuild of the inner city calls for a new ‘dense, vibrant and diverse central hub’. Proposing the introduction of new residential units within the central city. However the placement of the low-rise housing in a key attribute of the rebuild, the eastern green ‘Frame’, diminishes its value as open green space. The proposed housing will also be restrictive in its target market and therefore the idea of a ‘vibrant’ inner city is difficult to achieve.  This thesis acts as response to the planned rebuild of inner Christchurch. Proposing the creation of a model for inner city housing which provides an alternative option to the proposed housing and existing and ongoing suburban sprawl. The design options were explored through a design-led process were the options were critiqued and developed.  The ‘final’ proposal is comprises of three tall towers, aptly named the Triple Towers, which condense the proposed low-rise housing from an 11000 square metre footprint to combined footprint of 1500 square metres. The result is an expansion of the publicly available green space along the proposed eastern frame of the city. The height of the project challenges the height restrictions and is provocative in its proposal and placement. The design explores the relationships between the occupants, the building, the ‘Frame’ and the central city.  The project is discussed through an exploration of the architecture of Rem Koolhaas, Renzo Piano and Oscar Niemeyer. Rather than their architecture being taken as a direct influence on which the design is based the discussion revolves around how and why each piece of comparative architecture is relevant to the designs desired outcome.

Research papers, Victoria University of Wellington

Diverse Density proposes an alternative housing strategy to the idealistic top-down process of housing development.  The term ‘Top – down’ refers to a situation in which decisions are made by a few people in authority rather than by the people who are affected by the decisions (Cambridge).  Problems/Position/Question: New Zealand’s urban housing is in a period of flux. Pressures of densification have permitted the intervention of medium density housing development schemes but these are not always successful. These typically top-down processes often result in internally focused design schemes that do not adhere to their specific context. The subsequent design outcomes can cause detrimental impacts to the local, urban and architectural conditions.  With vast quantities of council regulations, building restrictions and design guidelines clouding over the housing sector, commonly referred to as ‘red tape’, occupant participation in the housing development sector is dwindling. A boundless separation between top-down and traditional housing processes has occurred and our existing neighbourhoods and historic architectural character are taking on the brunt of the problem. The thought-provoking, alternative housings strategies of key research theorists Alejandro Aravena and John Habraken frame positions that challenge contemporary densification methods with an alternative strategy.  This position is addressed by endeavoring to answer; How can demands for denser housing achieve dynamic design responses that adhere to changes in occupancy, function and local site conditions?  Aim: The aim of this thesis is to challenge New Zealand’s current housing densification methods by proposing an alternative densification strategy. Explicit devotion will be attributed to opposing top-down building developments. Secondly, this thesis aims to test a speculative site-specific housing model. The implementation of a Christchurch housing scenario will situate an investigative study to test the strategy and its ability to stimulate greater diversity, site responsiveness, functional adaptability and occupancy permutation. The post-earthquake housing conditions of Christchurch provide an appropriate scenario to test and implement design-led investigations.  Objectives: The primary objectives of this design-led research investigation it to challenge the idealistic top-down method of developing density with a new method to:  - Develop contextual architectural cohesion - Encourage residential diversity - Reinvigorate architectural autonomy - Respond to, and recognise, existing site conditions - Develop a housing model that: - Adapts to occupant functionality preferences - Caters to occupancy diversity - Achieves contextual responsiveness  The proposition is addressed through a speculative design-led scenario study. A well-established Christchurch urban environment is adopted to implement and critique the envisioned alternative strategy. Development of the designs responsiveness, adaptability, and functionality produce a prototype housing model that actively adheres to its particular context.  Implication: The implications of this research would be an alternative densification strategy to perceive the advancement of punctual assessment of building compliance. With accelerated building processes, the research may have implications for addressing New Zealand’s housing crisis whilst simultaneously providing diverse, personable and responsive architectural solutions. A more dynamic, up-to-date and responsive housing development sector would be informed.

Research papers, Victoria University of Wellington

This dissertation explores the advocacy for the Christchurch Town Hall that occurred in 2012-2015 after the Canterbury Earthquakes. It frames this advocacy as an instance of collective-action community participation in a heritage decision, and explores the types of heritage values it expressed, particularly social values. The analysis contextualises the advocacy in post-quake Christchurch, and considers its relationship with other developments in local politics, heritage advocacy, and urban activism. In doing so, this dissertation considers how collective action operates as a form of public participation, and the practical implications for understanding and recognising social value.  This research draws on studies of practices that underpin social value recognition in formal heritage management. Social value is held by communities outside institutions. Engaging with communities enables institutions to explore the values of specific places, and to realise the potential of activating local connections with heritage places. Such projects can be seen as participatory practices. However, these processes require skills and resources, and may not be appropriate for all places, communities and institutions. However, literature has understudied collective action as a form of community participation in heritage management. All participation processes have nuances of communities, processes, and context, and this dissertation analyses these in one case. The research specifically asked what heritage values (especially social values) were expressed through collective action, what the relationship was with the participation processes, communities, and wider situation that produced them, and the impact on institutional rhetoric and decisions. The research analysed values expressed in representations made to council in support of the Town Hall. It also used documentary sources and interviews with key informants to analyse the advocacy and decision-making processes and their relationships with the wider context and other grassroots activities. The analysis concluded that the values expressed intertwined social and professional values. They were related to the communities and circumstance that produced them, as an advocacy campaign for a civic heritage building from a Western architectural tradition. The advocacy value arguments were one of several factors that impacted the decision. They have had a lasting impact on rhetoric around the Town Hall, as was a heritage-making practice in its own right. This dissertation makes a number of contributions to the discussion of social value and community in heritage. It suggests connections between advocacy and participation perspectives in heritage. It recommends consideration of nuances of communities, context, and place meanings when using heritage advocacy campaigns as evidence of social value. It adds to the literature on heritage advocacy, and offers a focused analysis of one of many heritage debates that occurred in post-quake Christchurch. Ultimately, it encourages practice to actively integrate social and community values and to develop self-reflexive engagement and valuation processes. Despite inherent challenges, participatory processes offer opportunities to diversify understandings of value, co-produce heritage meanings with communities, and empower citizens in democratic processes around the places they live with and love.

Research papers, The University of Auckland Library

Eccentrically Braced Frames (EBFs) are a widely used seismic resisting structural steel system. Since their inception in the late 1970s, they have been a viable option with an available stiffness that is between simple braced systems and moment resisting systems. A similar concept, the linked column frame (LCF), uses shear links between two closely spaced columns. In both cases, the key component is the active link or the shear link, and this component is the objective of this study. The performance of high rise EBF buildings in the 2010 and 2011 Christchurch earthquakes was beyond that which was expected, especially considering the very high accelerations recorded. As the concrete high-rises were torn down, two EBF buildings remained standing and only required some structural repair. These events prompted a renewed interest in bolted shear links, as well as their performance. While some research into replaceable shear links had already been done (Mansour, 2011), the objectives of this study were to improve on the shear link itself, with the consideration that links built in the future are likely to be bolted. The main components of this study were to: 1. Reduce or eliminate the requirements for intermediate web stiffeners, as they were suspected of being detrimental to performance. Furthermore, any reduction in stiffening requirements is a direct fabrication cost saving. Links with low web aspect ratios were found to achieve exceptional ductilities when no stiffeners were included, prompting new design equations. 2. Ensure that the stresses in the ends of links are adequately transferred into the endplates without causing fractures. Although most of the experimental links had web doubler plates included, four had varied lengths of such doubler plates from 0.0 in. to 8.0 in. The link without any doubler plates performed to a similar level to its peers, and thus it is likely that links with quality end details may not need web doubler plates at all. 3. Evaluate the performance of a link with double sided stiffeners without the use of web welds, as opposed to conventional single sided, welded stiffeners. This link performed well, and web-weld-less double sided stiffeners may be an economical alternative to conventional stiffeners for deeper sections of links. 4. Evaluate the performance of a link with thin endplates that are made efficient with the use of gusset plates. This link performed to an acceptable level and provides evidence for a cost effective alternative to thick endplates, especially considering the high overstrength end moments in links, typically requiring 16-bolt connections. 5. Examine the potential use of an alternative EBF arrangement where the collector beam is over sized, and the link section is formed by cutting out parts of the beam's web. After running a series of finite element models each with a unique variation, a number of approximate design rules were derived such that future research could develop this idea further experimentally. 6. Ensure that during testing, the secondary elements (members that are not the shear link), do not yield and are not close to yielding. None of the instrumented elements experienced any unexpected yielding, however the concerns for high stresses in the collector beam panel zone during design were warranted. The use of an existing New Zealand design equation is recommended as an extra check for design codes worldwide. The above objectives were mainly conducted experimentally, except: the data set for item 1 was greatly expanded through the use of a calibrated numerical model which was then used in an extensive parametric study; item 5 was purely finite element based; and, a small parametric study was included for item 3 in an attempt to expand on the trends found there.

Research papers, Victoria University of Wellington

<b>Aotearoa has undoubtedly some of the most beautiful landscapes in the world, a privilege for its inhabitants. However, as our cities have developed post-colonisation, the connection between the natural environment and its occupants has diminished. Designers play a vital role within an ever evolving world to progress the built environment in a way that reflects and restores vital values that have been deprioritised. Future practice should prioritise diversity, care for the land, enhancement of community space, and sustainable practices.</b> This research sets out to demonstrate that new design methodologies can encourage kaitiakitanga, whilst meeting the needs of urban public space. Initially through critical analysis and literature based research, a study of Ōtautahi Christchurch, the South Island’s largest city, was undertaken. The principles of a ‘15 minute city’ were also explored and applied to the city, establishing issues within the built environment that drove the overall research direction. Through the tools of critical reflection and a research through design methodology, a design toolkit was constructed. This toolkit sets out to provide designers with a simple streamlined method of developing urban interventions that are sustainable and beneficial for human well-being. The toolkit incorporates an abstraction of the ‘15 minute city’ ideology and introduces the concepts of evolving green transportation routes within cities. Ōtautahi Christchurch, a city with a significant history of earthquake-caused damage, was chosen as the primary site for the application of this research’s proposed toolkit. The city becomes a canvas for an urban rebuild that explores and aims to set a precedent for a progressive 21st-century city. A key finding as the toolkit research developed was the idea of a ‘temporary’ phase or intervention, being added to traditional design methodologies prior to permanent building. The research explains how this temporary phase could more actively engage diverse user groups and create active conversations between communities and designers. The refined toolkit sets outs proposed timeline phases, methods of site analysis and development of design drivers. Alongside this, a modular architectural system establishes a design proposal for the temporary phase of an individual site within an evolving green route. This outcome provides further opportunity for realistic testing, which would actively involve communities and aims to shift our priorities within urban development. The introduction of the ‘temporary’ phase is beneficial in mitigating psychological implications on people and limiting physical impacts on the landscape. The final design stage of the thesis applied the toolkit process to three sites in Ōtautahi Christchurch. Through a holistic lens, the toolkit framework set out methods to collate information that provides guidance for development on the sites. While some layers are initiated simply by recognising site characteristics, others are informed through software such as GIS. Connected by a proposed green transport route, the three initial sites are developed with temporary interventions that utilise the modular design set out previously in the research. Contextualising the interventions on real world sites tested the flexibility of the system and allowed for critical reflection on the applicability of the toolkit to Aotearoa. The research concludes by identifying future research opportunities and speculates on possible applications of its findings within the real world. Temporary Permanence highlights the significant role that we, as designers, have in shifting urban priorities to create more holistic, sustainable, and inclusive cities for people and the planet.

Research papers, The University of Auckland Library

The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.