Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
Christchurch - Earthquake Rebuild - Temporary CBD Christchurch City CBD Cashel Street Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor...
None
A video of an interview with Deb Riach, co-owner of Coffee Worx, about the company's experiences after the 2010 and 2011 earthquakes. This video is part of The Press's 'Up and Running' series, which showcases businesses which stayed up and running despite the challenges posed by the 2010 and 2011 Canterbury earthquakes.
Research on human behaviour during earthquake shaking has identified three main influences of behaviour: the environment the individual is located immediately before and during the earthquake, in terms of where the individual is and who the individual is with at the time of the earthquake; individual characteristics, such as age, gender, previous earthquake experience, and the intensity and duration of earthquake shaking. However, little research to date has systematically analysed the immediate observable human responses to earthquake shaking, mostly due to data constraints and/or ethical considerations. Research on human behaviour during earthquakes has relied on simulations or post-event, reflective interviews and questionnaire studies, often performed weeks to months or even years following the event. Such studies are therefore subject to limitations such as the quality of the participant's memory or (perceived) realism of a simulation. The aim of this research was to develop a robust coding scheme to analyse human behaviour during earthquake shaking using video footage captured during an earthquake event. This will allow systematic analysis of individuals during real earthquakes using a previously unutilized data source, thus help develop guidance on appropriate protective actions. The coding scheme was developed in a two-part process, combining a deductive and inductive approach. Previous research studies of human behavioral response during earthquake shaking provided the basis for the coding scheme. This was then iteratively refined by applying the coding scheme to a broad range of video footage of people exposed to strong shaking during the Canterbury earthquake sequence. The aim of this was to optimise coding scheme content and application across a broad range of scenarios, and to increase inter-coder reliability. The methodology to code data will enhance objective observation of video footage to allow cross-event analysis and explore (among others): reaction time, patterns of behaviour, and social, environmental and situational influences of behaviour. This can provide guidance for building configuration and design, and evidence-based recommendations for public education about injury-preventing behavioural responses during earthquake shaking.
In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.
None
In this paper, we perform hybrid broadband (0-10 Hz) ground motion simulations for the ten most significant events (Mw 4.7-7.1) in the 2010-2011 Canterbury earthquake sequence. Taking advantage of having repeated recordings at same stations, we validate our simulations using both recordings and an empirically-developed ground motion prediction equation (GMPE). The simulation clearly captures the sedimentary basin amplification and the rupture directivity effects. Quantitative comparisons of the simulations with both recordings and the GMPE, as well as analyses of the total residuals (indicating model bias) show that simulations perform better than the empirical GMPE, especially for long period. To scrutinize the ground motion variability, we partitioned the total residuals into different components. The total residual appears to be unbiased, and the use of a 3D velocity structure reduces the long period systematic bias particularly for stations located close to the Banks Peninsula volcanic area.
Provides information for students and staff of University of Canterbury in relation to the Canterbury earthquake of 22nd February 2011. Contains re-start timetable, transport options, latest announcements, FAQs, video and photo galleries, messages of support and sections devoted to the Library and the College of Education.
The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.
Text across the top of the cartoon reads 'When the luck ran out' and shows a disintegrating building that includes two dice with a skull and crossbone on one facet. Context - On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. This followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Quantity: 1 digital cartoon(s).
CERA site which allows a check of the status of residental property in greater Christchurch in the aftermath of the series of major earthquakes and aftershocks which began in September 2010. Also has information about the zone classifications and FAQs.
None
North Hagley Park, Christchurch, New Zealand. Tens of thousands turned out today to mark the one year anniversary of the devastating earthquake that struck the city at 12.51pm on 22 February, 2011. 185 people lost their lives. file.stuff.co.nz/stuff/12-51/ Took 4 pa...
The cartoon shows a daffodil blooming in an earthquake fissure with the wrecked buildings of Christchurch in the background. Context: September 4th is the anniversary of the first quake. Many people in Christchurch are still living in houses that may yet be red stickered (condemned) and many city buildings are still out of bounds, either condemned to destruction or rebuilt after the earthquakes of September 4th 2010 and February 22nd and June 13th 2011. But the return of spring maybe brings a sense of encouragement and hope. Title provided by librarian Quantity: 1 digital cartoon(s).
Took this back in September after the Canterbury quake - gives a different perspective on how powerful this really was.
Reflection of the Christchurch Cathedral before Feb 22rd Earthquake
Catholic Basilica, Christchurch - at the right place, at the right time...
Today is the anniversary of the 7.1 magnitude earthquake that hit Canterbury on 4 September 2010, and two lights - The White Lights of Hope - were turned on this evening from the square to help fill the city's "dark heart" and remind residents to look forward to a bright future. Note: While I was capturing this image we had a ...
Today is the anniversary of the 7.1 magnitude earthquake that hit Canterbury on 4 September 2010, and two lights - The White Lights of Hope - were turned on this evening from the square to help fill the city's "dark heart" and remind residents to look forward to a bright future. Note: While I was capturing this image we had a ...
EQC's manager for the Canterbury home repair programme, Reid Stiven, respondes to claims of misleading estimates of damage to household foundations from the 2010 and 2011 earthquakes.
This paper provides a comparison between the strong ground motions observed in the Christchurch central business district in the 4 September 2010 Mw7.1 Darfield, and 22 February 2011 Mw6.3 Christchurch earthquakes with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. Despite Tokyo being located approximately 110km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were strong enough to cause structural damage in Tokyo and also significant liquefaction to loose reclaimed soils in Tokyo bay. Comparisons include the strong motion time histories, response spectra, significant durations and arias intensity. The implications for large earthquakes in New Zealand are also briefly discussed.
None
None