Search

found 2153 results

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) photographed with their team leader, Al Dwyer, Prime Minister John Key, and Canterbury Earthquake Recovery Minister Gerry Brownlee, outside the US headquarters in Latimer Square.

Research papers, University of Canterbury Library

Semi-empirical models based on in-situ geotechnical tests have become the standard of practice for predicting soil liquefaction. Since the inception of the “simplified” cyclic-stress model in 1971, variants based on various in-situ tests have been developed, including the Cone Penetration Test (CPT). More recently, prediction models based soley on remotely-sensed data were developed. Similar to systems that provide automated content on earthquake impacts, these “geospatial” models aim to predict liquefaction for rapid response and loss estimation using readily-available data. This data includes (i) common ground-motion intensity measures (e.g., PGA), which can either be provided in near-real-time following an earthquake, or predicted for a future event; and (ii) geospatial parameters derived from digital elevation models, which are used to infer characteristics of the subsurface relevent to liquefaction. However, the predictive capabilities of geospatial and geotechnical models have not been directly compared, which could elucidate techniques for improving the geospatial models, and which would provide a baseline for measuring improvements. Accordingly, this study assesses the realtive efficacy of liquefaction models based on geospatial vs. CPT data using 9,908 case-studies from the 2010-2016 Canterbury earthquakes. While the top-performing models are CPT-based, the geospatial models perform relatively well given their simplicity and low cost. Although further research is needed (e.g., to improve upon the performance of current models), the findings of this study suggest that geospatial models have the potential to provide valuable first-order predictions of liquefaction occurence and consequence. Towards this end, performance assessments of geospatial vs. geotechnical models are ongoing for more than 20 additional global earthquakes.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers Building on Durham Street. Large sections of the masonry have collapsed, spilling onto the road. Wire fencing has been placed around the building as a cordon. Scaffolding erected up the side has collapsed.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers Building on Durham Street. Large sections of the masonry have collapsed, spilling onto the road. Wire fencing has been placed around the building as a cordon. Scaffolding erected up the side has collapsed.

Images, UC QuakeStudies

A photograph of the earthquake-damaged Observatory tower at the Christchurch Arts Centre. The photograph was taken using a cellphone camera. The top of the tower collapsed during the 22 February 2011 earthquake. The rubble from the tower has been cleared and a tarpaulin has been placed over the top of the broken tower. Tyres have been placed on the tarpaulin to hold it down. A temporary roof has also been constructed over the tower to keep out the rain.

Images, UC QuakeStudies

A discarded shoe that has been left on the grass beside Cashel Street in the aftermath of the 22 February 2011 earthquake. Behind it, emergency personnel can be seen helping themselves to food provided to refuel them while searching for trapped people in the ruins of the Canterbury Television Building.

Articles, UC QuakeStudies

A PDF copy of a media release announcing the Canterbury District Health Board's support of the Psychosocial "Community in Mind" Strategy for Greater Christchurch. The media release includes quotes from David Meates (CDHB) on the impacts of the Canterbury earthquakes and the importance of the Strategy. The release was produced in June 2014.

Articles, UC QuakeStudies

Caption reads: "At the moment we’re trying to carry on like everything is normal. It’s not easy. It’s hard sometimes to remember what things were like before the earthquake."

Research papers, University of Canterbury Library

The purpose of this research is to investigate men’s experiences of the 2016 7.8 magnitude Kaikōura earthquake and Tsunami. While, research into the impacts of the earthquake has been conducted, few studies have examined how gender shaped people’s experiences of this natural hazard event. Analysing disasters through a gender lens has significantly contributed to disaster scholarship in identifying the resilience and vulnerabilities of individuals and communities pre- and post-disaster (Fordham, 2012; Bradshaw, 2013). This research employs understandings of masculinities (Connell, 2005), to examine men’s strengths and challenges in responding, recovering, and coping following the earthquake. Qualitative inquiry was carried out in Northern Canterbury and Marlborough involving 18 face-to-face interviews with men who were impacted by the Kaikōura earthquake and its aftermath. Interview material is being analysed using thematic and narrative analysis. Some of the preliminary findings have shown that men took on voluntary roles in addition to their fulltime paid work resulting in long hours, poor sleep and little time spent with family. Some men assisted wives and children to high ground then drove into the tsunami zone to check on relatives or to help evacuate people. Although analysis of the findings is currently ongoing, preliminary findings have identified that the men who participated in the study have been negatively impacted by the 2016 Kaikōura earthquake. A theme identified amongst participants was an avoidance to seek support with the challenges they were experiencing due to the earthquake. The research findings align with key characteristics of masculinity, including demonstrating risky behaviours and neglecting self or professional care. This study suggests that these behaviours affect men’s overall resilience, and thus the resilience of the wider community.

Images, UC QuakeStudies

Lyttelton Farmers Market stall holder, a member of the Lyttelton community who was given a felt heart. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

Members of the Lyttelton community stitching felt hearts in front of the library. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

A member of the Lyttelton community who was given a felt heart. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

Jacinda, a member of the Lyttelton community who was given a felt heart outside the library. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

A member of the Lyttelton community who was given a felt heart outside the library. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

A member of the Lyttelton community who was given a felt heart outside the library. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

A member of the Lyttelton community who was given a felt heart. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.