A photograph of Erica Duthie from Tape Art NZ (left) with Community and Public Health staff in front of the large tape art mural. The staff are modelling for the 'bubble maker' installation behind them. The photograph was taken at Street Talk, a Tape Art residency held from 6 - 9 March 2014. Street Talk was a collaborative project between All Right?, Healthy Christchurch and Tape Art NZ that had Christchurch communities create large tape art murals on the south wall of Community and Public Health.
A chalkboard sign outlining the programme for the evening of April 10th, 2011 at Gap Filler's "Film in the Gap!" project. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 5pm onwards. 5pm: Plasticine Heroes, I gave These Guys 5 Bucks, 6pm: The Eastern, 7pm: Film - Candyman. Bring - cushion, chair, blanket, picnic. Coffee from 4:30pm daily. Ex demolition site. Please be safety aware. Proper footwear must be worn!". The sign was stuck to the rear wall of Mitre 10 in Beckenham.
A chalkboard sign outlining the programme for the evening of April 8th, 2011 at Gap Filler's "Film in the Gap!" project. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 5pm onwards. 5pm: Mundi, 6pm: Lindon Puffin, 7pm: Film - Draquila (90mins). Bring - cushion, chair, blanket, picnic. Coffee from 4:30pm daily. Ex demolition site. Please be safety aware. Proper footwear must be worn!". The sign is stuck to the rear wall of Mitre 10 in Beckenham.
A chalkboard paper sign outlining the programme for the evening of April 1st, 2011 at Gap Filler's "Film in the Gap!" project. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 6pm onwards. 6 - Daren Tatom, 7 - The Blues Professor, 8 - Film 'Gordonia'.....Bring a blankie and a cushion. Ex demolition site. Please be safety aware. Proper footwear must be worn!". The sign is stuck to the rear wall of Mitre 10 in Beckenham, facing inwards to the site of the project.
A photograph of a member of the Wellington Emergency Management Office Emergency Response Team standing in front of the earthquake-damaged Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have warped, breaking the glass. USAR codes have been spray-painted on one of the columns. A red sticker taped to the door indicates that the building is unsafe to enter.
A photograph of a member of the Wellington Emergency Management Office Emergency Response Team standing in front of the earthquake-damaged Avonmore House on Hereford Street. Sections of the walls have crumbled, spilling bricks and masonry onto the footpath and street below. Many of the windows have also warped, breaking the glass. USAR codes have been spray-painted on one of the columns. A red sticker taped to the door indicates that the building is unsafe to enter.
A photograph of emergency management personnel examining a block of earthquake-damaged rooms at Stonehurst Accommodation on Gloucester Street. The bottom storey of the block has collapsed and the remaining rooms are now resting on an incline. The front walls of these rooms have also collapsed and the rubble has spilled in to the courtyard in front. Cordon tape has been draped across the courtyard in front of the rubble. In the foreground there is liquefaction on the ground from a liquefaction volcano.
A photograph of the tape art mural. Erica Duthie from Tape Art NZ can be seen beginning a tape artwork for the mural. In the foreground a Greening the Rubble site is being planted. The photograph was taken at Street Talk, a Tape Art residency held from 6 - 9 March 2014. Street Talk was a collaborative project between All Right?, Healthy Christchurch and Tape Art NZ that had Christchurch communities create large tape art murals on the south wall of Community and Public Health.
A photograph of tape artists with their creation - a tape art bubble for the mural. In the background Struan Ashby from Tape Art NZ adds tape art bubbles to the mural. The photograph was taken at Street Talk, a Tape Art residency held from 6 - 9 March 2014. Street Talk was a collaborative project between All Right?, Healthy Christchurch and Tape Art NZ that had Christchurch communities create large tape art murals on the south wall of Community and Public Health.
During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/2013-2/
The performance of retrofitted unreinforced masonry (URM) bearing wall buildings in Christchurch is examined, considering ground motion recordings from multiple events. Suggestions for how the experiences in Christchurch might be relevant to retrofit practices common to New Zealand, U.S. and Canada are also provided. Whilst the poor performance of unretrofitted URM buildings in earthquakes is well known, much less is known about how retrofitted URM buildings perform when subjected to strong ground shaking.
A photograph of the Struan Ashby (left) and Erica Duthie (right) from Tape Art NZ with the 'All Righties' in front of the mural. Ashby and Duthie are holding tape art bubbles to be added to the mural. The photograph was taken at Street Talk, a Tape Art residency held from 6 - 9 March 2014. Street Talk was a collaborative project between All Right?, Healthy Christchurch and Tape Art NZ that had Christchurch communities create large tape art murals on the south wall of Community and Public Health.
A photograph an All Right? staff member with a pair of tape artists and their creation - a tape art bubble for the mural. In the background Struan Ashby from Tape Art NZ gets directions from a young tape artist. The photograph was taken at Street Talk, a Tape Art residency held from 6 - 9 March 2014. Street Talk was a collaborative project between All Right?, Healthy Christchurch and Tape Art NZ that had Christchurch communities create large tape art murals on the south wall of Community and Public Health.
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking along the south wall, Herbert Thomas and Susan Tull already settled in and working".
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Nikki Saunders, Lei Zhang (on the far wall), Nathan Gardiner and Blair - unpacking and settling in".
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/
Following the 2010–2011 Canterbury earthquakes, a renewed focus has been directed across New Zealand to the hazard posed by the country‘s earthquake-vulnerable buildings, namely unreinforced masonry (URM) and reinforced concrete (RC) buildings with potentially nonductile components that have historically performed poorly in large earthquakes. The research reported herein was pursued with the intention of addressing several recommendations made by the Canterbury Earthquakes Royal Commission of Inquiry which were classified into the following general categories: Identification and provisional vulnerability assessment of URM and RC buildings and building components; Testing, assessment, and retrofitting of URM walls loaded out-of-plane, with a particular focus on highly vulnerable URM cavity walls; Testing and assessment of RC frame components, especially those with presumably non-ductile reinforcement detailing; Portfolio management considering risks, regulations, and potential costs for a portfolio that includes several potentially earthquake-vulnerable buildings; and Ongoing investigations and proposed research needs. While the findings from the reported research have implications for seismic assessments of buildings across New Zealand and elsewhere, an emphasis was placed on Auckland given this research program‘s partnership with the Auckland Council, the Auckland region accounting for about a third each of the country‘s population and economic production, and the number and variety of buildings within the Auckland building stock. An additional evaluation of a historic building stock was carried out for select buildings located in Hawke‘s Bay, and additional experimental testing was carried out for select buildings located in Hawke‘s Bay and Christchurch.
A photograph of a community member leading a group of children who are playing drums. On the wall behind the man there is a piece of traditional Pacific-island flax weaving. The photograph was taken at the Tiny Adventures launch at Niu Early Learning Centre in Linwood. Niu Early Learning Centre is managed by the Tongan Canterbury Community Trust. The Tiny Adventure card packs and smartphone app offer ideas, games and quick fun ways for parents to spend time with their children. They are a project of the All Right? mental health campaign.
Army personnel beside the damaged Colombo Street Wesleyan Church. Danger tape has been stretched across Colombo Street to create a cordon. The photographer comments, "After the 22nd February earthquake, my wife and I spent one night in a tent outside our home and then left to stay with friends in Timaru for a couple of nights. On the way along Brougham Street, we passed the Sydenham Church on the corner of Colombo Street and Brougham Street. As you can see from the photos, the upper area has been extensively damaged. Most of the damage appears to be on the east facing wall although we didn't get much of a look at the other sides or, of course, the interior".
Damage to the Colombo Street Wesleyan Church. The gable end has partially collapsed, and the window is damaged. The photographer comments, "After the 22nd February earthquake, my wife and I spent one night in a tent outside our home and then left to stay with friends in Timaru for a couple of nights. On the way along Brougham Street, we passed the Sydenham Church on the corner of Colombo Street and Brougham Street. As you can see from the photos, the upper area has been extensively damaged. Most of the damage appears to be on the east facing wall although we didn't get much of a look at the other sides or, of course, the interior".
A photograph of signs on a wall in the Christchurch Art Gallery. The signs read, "Final media trip to the CTV building, 15:00 hours, media opportunity with National Controller and rescue services. This is the last scheduled media hour into the red zone", "Media Briefings, Tuesday 8 March: 10:30 hours, Wednesday 9 March: 15:00 hours, in auditorium" and "Please switch off your cell phones before entering media briefings. Thank you". There is also a diagram of the first and ground floor of the art gallery. The Christchurch Art Gallery served as the temporary Civil Defence headquarters after the 22 February 2011 earthquake.
A photograph of paper hearts pegged on the cordon fence around the Chinese Methodist Church on Papanui Road. Quotes on the hearts read, "'Even though I walk through the valley of the shadow of death, I will fear no evil for you are with me.' Psalm 23", "'We can do no great things; only small things with great love.' Mother Teresa, and, "'Peace begins with a smile,' Mother Teresa". In the background, the earthquake damage to the Christchurch Chinese Methodist Church can be seen. The wall of the gable has crumbled, the bricks spilling onto the grass below.
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking back along the centre area from the doors. The e-learning advisers and Herbert Thomas, our team leader, sit along the south wall".
A yellow sticker on the door of a house in Worcester Street reading, "Restricted use. No entry except on essential business. Warning: This building has been damaged and its structural safety is questionable. Earthquake aftershocks present danger. Enter only at own risk. Subsequent events may result in increased damage and danger, changing this assessment. Reinspection may be required. The damage is as described below: partial collapse of longitudinal walls". Following on from this are the specific conditions that must be complied with to enable entry into the property, the inspector's identification details, and the date and time the building was inspected. At the bottom the form reads, "Do not remove this placard. Placed by order of the territorial authority Christchurch City Council".
The damaged Knox Church on Bealey Avenue. The brick walls have collapsed, exposing the wooden structure beneath. The photographer comments, "Bealey Avenue is open to traffic, as are many of the side streets, and the damage to buildings along this street is quite impressive and perhaps just a small taste of the damage that lies beyond the cordon ... At the Hagley Park end of Bealey Avenue lies the Knox Church. This church suffered in the first earthquake and featured in the news a fair bit at the time. It's crazy to think that all that appeared to be damaged then were some bricks that had fallen from near the roof. Now, Knox Church is all but a wooden frame holding up a roof. It's eerie to drive past this large church and be able to look straight through it to trees on the other side".
Members of the public at Gap Filler's "Film in the Gap!" project. Behind the pair is a chalkboard sign outlining the project's programme for the evening of evening of April 10th, 2011 at Gap Filler's "Film in the Gap!" project. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 5pm onwards. 5pm: Plasticine Heroes, I gave These Guys 5 Bucks, 6pm: The Eastern, 7pm: Film - Candyman. Bring - cushion, chair, blanket, picnic. Coffee from 4:30pm daily. Ex demolition site. Please be safety aware. Proper footwear must be worn!". The sign is stuck to the rear wall of Mitre 10 in Beckenham, facing inwards to the site of the project.
Existing unreinforced masonry (URM) buildings are often composed of traditional construction techniques, with poor connections between walls and diaphragms that results in poor performance when subjected to seismic actions. In these cases the application of the common equivalent static procedure is not applicable because it is not possible to assure “box like” behaviour of the structure. In such conditions the ultimate strength of the structure relies on the behaviour of the macro-elements that compose the deformation mechanisms of the whole structure. These macroelements are a single or combination of structural elements of the structure which are bonded one to each other. The Canterbury earthquake sequence was taken as a reference to estimate the most commonly occurring collapse mechanisms found in New Zealand URM buildings in order to define the most appropriate macroelements.
Unrestrained unreinforced clay brick masonry (URM) parapets are found atop a large number of vintage URM buildings. Parapets are typically non-structural cantilevered wall elements that form a fire barrier and in most cases form decorative and ornamental features of vintage URM buildings. Parapets are considered to be one of the most vulnerable elements that are prone to out-of-plane collapse when subjected to earthquake induced shaking. An in-depth analysis of the damage database collected following the 2010/2011 Canterbury earthquakes was performed to obtain information about the distribution, characteristics and observed performance of both the as-built and retrofitted parapets in the Christchurch region. Results, statistical interpretation and implications are presented herein. http://www.aees.org.au/downloads/conference-papers/2015-2/
A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.