Search

found 17628 results

Images, UC QuakeStudies

A photograph submitted by Ginny Larsen to the QuakeStories website. The description reads, "I work for Neighbourhood Trust in Mairehau/Shirley. In April 2011 a group of people from Liberty Church came down to Christchurch to gift 100s of Easter boxes to residents – lots of treats to bring a smile.".

Images, UC QuakeStudies

A photograph of the rebuilt Blackwell's Department Store on the corner of Williams Street and Raven Quay in Kaiapoi. The department store was rebuilt after the previous building was damaged in the 2010 and 2011 Canterbury earthquakes. This photograph was modelled off an image taken by BeckerFraserPhotos in September 2010.

Images, UC QuakeStudies

A photograph of the rebuilt Blackwell's Department Store on the corner of Williams Street and Raven Quay in Kaiapoi. The department store was rebuilt after the previous building was damaged in the 2010 and 2011 Canterbury earthquakes. This photograph was modelled off an image taken by BeckerFraserPhotos in September 2010.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein. http://www.confer.co.nz/nzsee/ VoR - Version of Record

Research papers, University of Canterbury Library

Asset management in power systems is exercised to improve network reliability to provide confidence and security for customers and asset owners. While there are well-established reliability metrics that are used to measure and manage business-as-usual disruptions, an increasing appreciation of the consequences of low-probability high-impact events means that resilience is increasingly being factored into asset management in order to provide robustness and redundancy to components and wider networks. This is particularly important for electricity systems, given that a range of other infrastructure lifelines depend upon their operation. The 2010-2011 Canterbury Earthquake Sequence provides valuable insights into electricity system criticality and resilience in the face of severe earthquake impacts. While above-ground assets are relatively easy to monitor and repair, underground assets such as cables emplaced across wide areas in the distribution network are difficult to monitor, identify faults on, and repair. This study has characterised in detail the impacts to buried electricity cables in Christchurch resulting from seismically-induced ground deformation caused primarily by liquefaction and lateral spread. Primary modes of failure include cable bending, stretching, insulation damage, joint braking and, being pulled off other equipment such as substation connections. Performance and repair data have been compiled into a detailed geospatial database, which in combination with spatial models of peak ground acceleration, peak ground velocity and ground deformation, will be used to establish rigorous relationships between seismicity and performance. These metrics will be used to inform asset owners of network performance in future earthquakes, further assess component criticality, and provide resilience metrics.

Research papers, Victoria University of Wellington

We aim to investigate the role of insurance in business recovery following the devastating Christchurch earthquake in February, 22nd, 2011. We analyze data from two business surveys conducted after the earthquake to examine how insurance affected business operation in the aftermath of the earthquake both in the short-term and longer-term. For the short-term analysis, we use a combination of propensity score matching (PSM) and linear probability model (LPM) to analyze the data. We first estimate the propensity scores for insurance take-up of each firm conditional on the firm’s individual characteristics. Stratification based on the estimated propensity scores is used to match the treated (insured) and the control (uninsured) firms. We then estimate the probability of firms’ continuing operations with a set of control variables to account for the level of damage and disruption caused by the quake in each stratum. We find little evidence of any beneficial effect of insurance coverage on business continuity in the short-run. For the longer-term analysis, we analyze the available survey data using logistic regression. The result suggests that business interruption insurance significantly promotes increased level of long-term productivity for surviving firms following the earthquake.

Images, UC QuakeStudies

A photograph submitted by Raymond Morris to the QuakeStories website. The description reads, "The Provincial Hotel, corner Barbadoes and Cashel streets is one the buildings now missing after the 2011 earthquakes, paintings of others can be found on the artist Raymond Morris’s flickr site (http://www.flickr.com/photos/rayso180/sets/72157626939956494/)".

Images, UC QuakeStudies

The University of Canterbury's E-Learning team's temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Getting sorted. Most gear in place, still making adjustments".

Images, UC QuakeStudies

A member of the University of Canterbury's E-Learning team in their temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Room 709 sofas".

Images, UC QuakeStudies

A member of the University of Canterbury's E-Learning team in their temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Our office, Room 709".

Images, UC QuakeStudies

The University of Canterbury's E-Learning team's temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Jess's desk. Viewed from my side of the couch".

Images, UC QuakeStudies

A photograph looking north up Liverpool Street from the intersection with Cashel Street. On the right, a pile of collapsed scaffolding can be seen on the road and two excavators are demolishing a building in the distance.

Images, UC QuakeStudies

A photograph of SBS Bank on the corner of Manchester Street and Worcester Street. The lower windows have been boarded up with plywood and wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of the Moko cafe building on the corner of Gloucester Street and New Regent Street. Scaffolding is being used to support part of the awning and a yellow sticker can be seen on the door.

Images, UC QuakeStudies

A construction worker using a saw to cut through a metal beam from the ruins of the Canterbury Television Building. Smoke is billowing from the ruins, which were still partly on fire when the photograph was taken.

Images, UC QuakeStudies

The damaged Provincial Council Legislative Chamber on Durham Street in the aftermath of the 22 February earthquake. The building's roof and walls have collapsed, as has the scaffolding which was erected to repair it after the 4 September earthquake.

Images, UC QuakeStudies

Emergency personnel helping themselves to food provided to refuel them while searching for trapped people in the ruins of the Canterbury Television Building. The remains of the building can be seen behind them, still partly on fire.