The 22 February 2011, Mw6.2 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing an estimated 181 fatalities and severely damaging thousands of residential and commercial buildings. This paper presents a summary of some of the observations made by the NSF-sponsored GEER Team regarding the geotechnical/geologic aspects of this earthquake. The Team focused on documenting the occurrence and severity of liquefaction and lateral spreading, performance of building and bridge foundations, buried pipelines and levees, and significant rockfalls and landslides. Liquefaction was pervasive and caused extensive damage to residential properties, water and wastewater networks, high-rise buildings, and bridges. Entire neighborhoods subsided, resulting in flooding that caused further damage. Additionally, liquefaction and lateral spreading resulted in damage to bridges and to stretches of levees along the Waimakariri and Kaiapoi Rivers. Rockfalls and landslides in the Port Hills damaged several homes and caused several fatalities.
Shows a fish wondering about the difference between an insurer delaying earthquake-damage settlements and a scavenging groper. Context: refers to the unacceptable and hugely damaging delays in the provision of earthquake damage settlements by insurance companies after the Christchurch earthquakes of 2010 and 2011. Quantity: 1 digital cartoon(s).
Colleagues of a Christchurch man killed in February's earthquake today relived the frightening moments when the quake struck.
The clock face on the left is showing the correct time. The clock face on the right stopped at the moment of the big earthquake in CHCH on Sept 4th at 4.25am. It stayed like that for a week until fixed. Interestingly that face has not shown the correct time since.
Heritage buildings are an important element of our urban environments, representing the hope and aspirations of a generation gone, reminding us of our achievements and our identity. When heritage buildings suffer damage, or fall into disrepair they are either met by one of two extremes; a bulldozer or painstaking repair. If the decision to conserve defeats the bulldozer, current heritage practice favours restoration into a mausoleum-type monument to yesteryear. But what if, rather than becoming a museum, these heritage buildings could live on and become a palimpsest of history? What if the damage was embraced and embodied in the repair? The Cathedral of the Blessed Sacrament on Barbadoes Street, Christchurch is the case study building for this thesis. Suffering damage in the Canterbury earthquakes of 2010 and 2011, the Cathedral sits in ruin waiting for decisions to be made around how it can be retained for future generations. This thesis will propose a reconstruction for the Cathedral through the analysis of precedent examples of reconstructing damaged heritage buildings and guided by a heritage framework proposed in this thesis. The employed process will be documented as an alternative method for reconstructing other damaged heritage buildings.
A damaged brick building on Tuam Street. Bricks have fallen from the wall exposing the interior, where a wooden structure can be seen to have collapsed. The photographer comments, "This is the damage caused by the numerous earthquakes in Christchurch, New Zealand. It closely resembles a face and the round blob in the square hole at the top of the nose is a pigeon".
A pigeon perches in the beams of a damaged building. The photographer comments, "The building next door was demolished after the Christchurch earthquake, which exposed the side of this building with it's very old corrugated iron walls. Some of the sheeting was damaged and exposed parts of the interior. The pigeon was sitting on a bit of wood with the beam above it had a very serious crack. I think you would be nervous as well".
Damage to The Bone Dude's Bone Carving Studio and Cultured Gallery on Fitzgerald Avenue. The brick wall is cracked, and the guttering has fallen. The photographer comments, "This building was damaged in the September earthquake in Christchurch. It was the Bone dude's bone carving studio. The motto on the wall was 'Carve your own' and it looks like the earthquakes did just that".
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. (L to R on ground): Archdeacon Andrew Starky; Vicar Indrea Alexander and Concillor Ray Bennett watch as Craig Perkins and Kevin Deam are hoisted by crane to remove damaged spires from the church tower. (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins inspect a damaged spire on the church tower".
The paper presents preliminary findings from comprehensive research studies on the liquefaction-induced damage to buildings and infrastructure in Christchurch during the 2010-2011 Canterbury earthquakes. It identifies key factors and mechanisms of damage to road bridges, shallow foundations of CBD buildings and buried pipelines, and highlights the implications of the findings for the seismic analysis and design of these structures.
The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.
Photograph captioned by Fairfax, "Aftershock damage at the Cathedral Square site of The Press caused by the Boxing Day quakes. Damage caused by the aftershock to the wall of the old wages building".
Photograph captioned by Fairfax, "The new Christchurch Council building has suffered only cosmetic damage in the September 4th earthquake. Construction workers abseil down the side of the civic building checking for any damage".
Photograph captioned by Fairfax, "Aftershock damage at the Cathedral Square site of The Press caused by the Boxing Day quakes. Damage caused by the aftershock to the wall of the old wages building".
Photograph captioned by Fairfax, "Aftershock damage at the Cathedral Square site of The Press caused by the Boxing Day quakes. Damage caused by the aftershock to the wall of the old wages building".
An entry from Ruth Gardner's blog for 4 March 2011 entitled, "Day 11, 4pm - inside the Christchurch cordon".
An entry from Ruth Gardner's blog for 26 February 2011 entitled, "Day 5, 1pm - inside the Christchurch cordon".
A pdf transcript of Participant number EG138's earthquake story, captured by the UC QuakeBox project.
An entry from Ruth Gardner's blog for 22 March 2012 entitled, "Lamenting the Loss".
Summary of oral history interview with Jenny May about her experiences of the Canterbury earthquakes.
Machinery on a truck bed. The photographer comments, "Seeing this near the Christchurch earthquake red zone I was wondering if they are now going to use a giant catapult to knock down some of the remaining quake damaged buildings".
The damaged Cathedral of the Blessed Sacrament. In the foreground is a vehicle that has been partly crushed by the collapse of the corner of the building.
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. Damaged spire-tops lie on the ground after being removed from the church tower".
Photograph captioned by Fairfax, "Aftershock damage at the Cathedral Square site of The Press caused by the Boxing Day quakes. Damage caused by the aftershock to the wall of the old wages building".
Photograph captioned by Fairfax, "The new Christchurch Council building has suffered only cosmetic damage in the September 4th earthquake. Construction workers are kept busy moving scaffolding and fixtures and checking for damage".
Photograph captioned by Fairfax, "Aftershock damage at the Cathedral Square site of The Press caused by the Boxing Day quakes. Damage caused by the aftershock to the wall of the old wages building".
Photograph captioned by Fairfax, "The new Christchurch Council building has suffered only cosmetic damage in the September 4th earthquake. Construction workers abseil down the side of the civic building checking for any damage".
Photograph captioned by Fairfax, "The new Christchurch Council building has suffered only cosmetic damage in the September 4th earthquake. Construction workers abseil down the side of the civic building checking for any damage".
Nikki Ross is still waiting on an insurance settlement almost seven years after her family home was damaged in the February, 2011 Christchurch earthquake. Trish Keith from EQC says they're hoping to offer the family a settlement in the next three weeks.
The "Lyttelton Harbour Review" newsletter for 15 April 2013, produced by the Lyttelton Harbour Information Centre.