Search

found 2153 results

Research papers, University of Canterbury Library

Knowing how to rapidly rebuild disaster-damaged infrastructure, while deciding appropriate recovery strategies and catering for future investment is a matter of core interest to government decision makers, utility providers, and business sectors. The purpose of this research is to explore the effects of decisions and outcomes for physical reconstruction on the overall recovery process of horizontal infrastructure in New Zealand using the Canterbury and Kaikoura earthquakes as cases. A mixed approach including a systematic review, questionnaire survey and semi-structured interviews is used to capture perspectives of those involved in reconstruction process and gain insights into the effect of critical elements on infrastructure downtime. Findings from this research will contribute towards advancements of a systems dynamics model considering critical decision-making variables across phases of the reconstruction process to assess how these variables affect the rebuild process and the corresponding downtime. This project will improve the ability to explore alternative resilience improvement pathways and test the efficacy of alternative means for facilitating a faster and better reconstruction process.

Images, UC QuakeStudies

A photograph of an earthquake-damaged suitcase in the South Quad of the Christchurch Arts Centre. The suitcase is resting on a pile of scaffolding which had been constructed around the Observatory tower. The scaffolding collapsed along with the tower during the 22 February 2011 earthquake.

Research papers, The University of Auckland Library

The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures. AM - Accepted Manuscript

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_034.JPG From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_025.JPG From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_022.JPG From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Container Love: shipping container decorated with knitted and crocheted squares. Sumner, Christchurch. File reference: CCL-2012-05-12-Around-Sumner-May-2012 DSC_023.JPG From the collection of Christchurch City Libraries.

Research papers, The University of Auckland Library

Many large-scale earthquakes all over the world have highlighted the impact of soil liquefaction to the built environment, but the scale of liquefaction-induced damage experienced in Christchurch and surrounding areas following the 2010-2011 Canterbury earthquake sequence (CES) was unparalleled, especially in terms of impact to an urban area. The short time interval between the large earthquakes presented a very rare occasion to examine liquefaction mechanism in natural deposits. The re-liquefaction experienced by the city highlighted the high liquefaction susceptibility of soil deposits in Christchurch, and presented a very challenging problem not only to the local residents but to the geotechnical engineering profession. This paper summarises the lessons learned from CES, and the impacts of the observations made to the current practice of liquefaction assessment and mitigation.

Images, UC QuakeStudies

A photograph of staff from the Department of Civil and Natural Resources Engineering at the University of Canterbury. The department used the Sunday School room of the Avonhead Baptist Church after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the reception area of the Department of Civil and Natural Resources Engineering at the University of Canterbury. The photograph was taken when the staff were let in after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers. The top section of the building has crumbled, the masonry spilling onto the footpath. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A photograph of staff from the Department of Civil and Natural Resources Engineering at the University of Canterbury. The department used the Sunday School room of the Avonhead Baptist Church after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the damaged Provincial Council Chambers on Durham Street. The building's roof and walls have collapsed, as has the scaffolding which was erected to repair it after the 4 September 2010 earthquake.