Page 16 of Section B of the South Island edition of the Christchurch Press, published on Wednesday 6 July 2011.
Page 16 of Section B of the South Island edition of the Christchurch Press, published on Thursday 4 November 2010.
Page 16 of Section B of the South Island edition of the Christchurch Press, published on Monday 6 June 2011.
Page 12 of Section B of the South Island edition of the Christchurch Press, published on Friday 1 August 2014.
Page 20 of Section B of the South Island edition of the Christchurch Press, published on Thursday 25 November 2010.
Page 10 of Section B of the South Island edition of the Christchurch Press, published on Monday 20 February 2012.
Page 8 of Section B of the South Island edition of the Christchurch Press, published on Tuesday 24 April 2012.
Page 8 of Section B of the South Island edition of the Christchurch Press, published on Friday 5 October 2012.
Page 10 of Section B of the South Island edition of the Christchurch Press, published on Monday 13 December 2010.
Page 14 of Section B of the South Island edition of the Christchurch Press, published on Friday 6 January 2012.
Page 19 of Section B of the South Island edition of the Christchurch Press, published on Friday 24 September 2010.
Page 11 of Section B of the South Island edition of the Christchurch Press, published on Thursday 12 April 2012.
A section of the brick wall on the Croydon House B&B Hotel has crumbled, exposing an interior room. Spray paint markings left by USAR can be seen on the house and fencing.
A section of the brick wall on the Croydon House B&B Hotel has crumbled, exposing an interior room. Spray paint markings left by USAR can be seen on the house and fencing.
In 2013 Becca Wood, Spatial Performance Practitioner, and Molly Mullen, Applied Theatre Practitioner, collaborated to create a short ambulatory performance with audio score for a group of drama educators attending a conference workshop on the possibilities of walking as performance. The performance was created remotely from the intended site: Rangi Ruru Girls’ School, in Christchurch, New Zealand. Following the destruction of the 2012 earthquake, this site was in a state of transformation and recovery. The performance walk attended to the histories, geographies and politics of this place, somatically, architecturally and socially. This paper engages with three critical questions: How might mediated listening and walking activate the coming together of bodies and place? What performative shifts occurred for the participants in the walk and workshop? How might we come to our senses? Through a performative practice of mediated site-based listening and walking, this paper is a reflection on the creative process and performance. We consider the potential for technologically mediated performance to offer new modes for learning and creative practice through interdisciplinary and evolving intermedial practices. http://www.tandfonline.com/toc/crde20/current AM - Accepted Manuscript
Detail of the front entrance to the Croydon House B&B Hotel. The front door has been removed and left in front. On the door are spray paint markings left by USAR after the building was checked. Cordon tape restricting access to the buildings can be seen.
Liquefaction of sandy soil has been observed to cause significant damage to infrastructure during major earthquakes. Historical cases of liquefaction have typically occurred in sands containing some portion of fines particles, which are defined as 75μm or smaller in diameter. The effects of fines on the undrained behaviour of sand are not however fully understood, and this study therefore attempts to quantify these effects through the undrained testing of sand mixed with non-plastic fines sourced from Christchurch, New Zealand. The experimental program carried out during this study consisted of undrained monotonic and cyclic triaxial tests performed on three different mixtures of sand and fines: the Fitzgerald Bridge mixture (FBM), and two Pinnacles Sand mixtures (PSM1 and PSM2). The fines content of each host sand was systematically varied up to a maximum of 30%, with all test specimens being reconstituted using moist tamping deposition. The undrained test results from the FBM soils were interpreted using a range of different measures of initial state. When using void ratio and relative density, the addition of fines to the FBM sand caused more contractive behaviour for both monotonic and cyclic loadings. This resulted in lower strengths at the steady state of deformation, and lower liquefaction resistances. When the intergranular void ratio was used for the interpretation, the effect of additional fines was to cause less contractive response in the sand. The state parameter and state index were also used to interpret the undrained cyclic test results – these measures suggested that additional fines caused less contractive sand behaviour, the opposite to that observed when using the void ratio. This highlighted the dependency on the parameter chosen as a basis for the response comparison when determining the effects of fines, and pointed out a need to identify a measure that normalizes such effects. Based on the FBM undrained test results and interpretations, the equivalent granular void ratio, e*, was identified from the literature as a measure of initial state that normalizes the effects of fines on the undrained behaviour of sand up to a fines content of 30%. This is done through a parameter within the e* definition termed the fines influence factor, b, which quantifies the effects of fines from a value of zero (no effect) to one (same effect as sand particles). The value of b was also determined to be different when interpreting the steady state lines (bSSL) and cyclic resistance curves (bCR) respectively for a given mixture of sand and fines. The steady state lines and cyclic resistance curves of the FBM soils and a number of other sand-fines mixtures sourced from the literature were subsequently interpreted using the equivalent granular void ratio concept, with bSSL and bCR values being back-calculated from the respective test data sets. Based on these interpretations, it was concluded that e* was conceptually a useful parameter for characterizing and quantifying the effects of fines on the undrained behaviour of sand, assuming the fines influence factor value could be derived. To allow prediction of the fines influence factor values, bSSL and bCR were correlated with material and depositional properties of the presented sand-fines mixtures. It was found that as the size of the fines particles relative to the sand particles became smaller, the values of bSSL and bCR reduced, indicating lower effect of fines. The same trend was also observed as the angularity of the sand particles increased. The depositional method was found to influence the value of bCR, due to the sensitivity of cyclic loading to initial soil fabric. This led to bSSL being used as a reference for the effect of fines, with specimens prepared by moist tamping having bCR > bSSL, and specimens prepared by slurry deposition having bCR < bSSL. Finally the correlations of the fines influence factor values with material and depositional properties were used to define the simplified estimation method – a procedure capable of predicting the approximate steady state lines and cyclic resistance curves of a sand as the non-plastic fines content is increased up to 30%. The method was critically reviewed based on the undrained test results of the PSM1 and PSM2 soils. This review suggested the method could accurately predict undrained response curves as the fines content was raised, based on the PSM1 test results. It also however identified some key issues with the method, such as the inability to accurately predict the responses of highly non-uniform soils, a lack of consideration for the entire particle size distribution of a soil, and the fact the errors in the prediction of bSSL carry through into the prediction of bCR. Lastly some areas of further investigation relating to the method were highlighted, including the need to verify the method through testing of sandy soils sourced from outside the Christchurch area, and the need to correlate the value of bCR with additional soil fabrics / depositional methods.
A view through cordon fencing towards the front entrance to the Croydon House B&B Hotel, the side wall of which crumbled. The front door has been removed and left in front. On the are spray paint markings left by USAR after the building was checked. Cordon tape restricting access to the buildings can be seen.
A man representing New Zealand reads a newspaper whose headline is ''Quake may cost insurance co's up to $16B'. Above him is an enormous mosquito that represents 'increased premiums' and that is about to suck the blood out of him; it casts a huge menacing shadow in which the man stands. Context - Insurance companies have experienced massive losses after the Canterbury earthquake. This may ultimately result in higher premiums as insurance companies try to recoup from their loss. According to Chris Ryan, Insurance Council chief executive, "The quake would probably result in foreign reinsurance companies increasing the premiums they charged local insurers." (Stuff 9 Sep 2010) Quantity: 1 digital cartoon(s).
Object Overview of 'Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistics seismic hazard assessment and earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch (Stirling et al, 1999).'
None
On Tuesday 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, New Zealand’s second largest city. The ‘earthquake’ was in fact an aftershock to an earlier 7.1 magnitude earthquake that had occurred on Saturday 4 September 2010. There were a number of key differences between the two events that meant they had dramatically different results for Christchurch and its inhabitants. The 22 February 2011 event resulted in one of New Zealand’s worst natural disasters on record, with 185 fatalities occurring and hundreds more being injured. In addition, a large number of buildings either collapsed or were damaged to the point where they needed to be totally demolished. Since the initial earthquake in September 2010, a large amount of building-related research has been initiated in New Zealand to investigate the impact of the series of seismic events – the major focus of these research projects has been on seismic, structural and geotechnical engineering matters. One project, however, conducted jointly by the University of Canterbury, the Fire Protection Association of New Zealand and BRANZ, has focused on the performance of fire protection systems in the earthquakes and the effectiveness of the systems in the event of post-earthquake fires occurring. Fortunately, very few fires actually broke out following the series of earthquake events in Christchurch, but fire after earthquakes still has significant implications for the built environment in New Zealand, and the collaborative research has provided some invaluable insight into the potential threat posed by post-earthquake fires in buildings. As well as summarising the damage caused to fire protection systems, this paper discusses the flow-on effect for designing structures to withstand post-earthquake fires. One of the underlying issues that will be explored is the existing regulatory framework in New Zealand whereby structural earthquake design and structural design for fire are treated as discrete design scenarios.
The Christchurch Cathedral after loosing its tower and spire after the 6.3 quake hit Christchurch 22 February 2011. The February 22 quake cracked pillars, twisted walls, shattered stained glass, collapsed buttresses, fractured masonry and toppled the tower. The rose window in the west wall collapsed in the June aftershocks. Demolition of the Chr...
Page 16 of Section B of the Christchurch Press, published on Saturday 11 September 2010.
Page 19 of Section B of the Christchurch Press, published on Saturday 11 September 2010.
Page 20 of Section B of the Christchurch Press, published on Saturday 11 September 2010.
Page 18 of Section B of the Christchurch Press, published on Saturday 11 September 2010.
Page 24 of Section B of the Christchurch Press, published on Saturday 11 September 2010.
Page 21 of Section B of the Christchurch Press, published on Saturday 11 September 2010.
Page 22 of Section B of the Christchurch Press, published on Saturday 11 September 2010.