A video of an address by John Ombler, Acting CEO of CERA, at the 2015 Seismics and the City forum. In this talk, Mr. Ombler shares his take on the progress if the rebuild, positive signs of advancement and what's in the pipeline; and how the main obstacles can be resolved.
A digger being loaded onto the back of a truck. The photographer comments, "After clearing away the remains of a building in Christchurch, New Zealand destroyed by the February 22 earthquake the digger can now be transported to its next destination for destruction".
A photograph of the earthquake damage to the former Canterbury Public Library on the corner of Hereford Street and Cambridge Terrace. The bricks in the corner of the building have crumbled and masonry can be seen on the footpath below. Wire fences have been placed around the building as a cordon.
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly before 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".
A photograph of the Cranmer Centre on Armagh Street. Bricks have fallen off one of the gables onto the concrete below. The remaining gables have been braced with wood to limit further damage. A cherry picker can be seen below, and there is fencing around the building.
A photograph taken near the intersection of Manchester Street, Lichfield Street and High Street. A mural has been painted on a brick wall. Behind this, the old Post Office building which now houses C1 Espresso can be seen with Ronnie Van Hout's sculpture on the roof.
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".
A photograph of several half-finished mosaic designs sitting on a table. Pieces of broken china are scattered around the mosaics.Crack'd for Christchurch comments, "As a trial we made pavers for the temporary Bus Exchange on St Asaph Street. You can see the paper plan folded to the right."
A view down Robson Avenue in Avonside showing damage to the road surface and the footpath that has resulted from the 4 September 2010 earthquake. On the left the blue lid of a septic tank can be seen. These tanks were installed in front of Avonside properties to allow residents to use their toilets after the September earthquake.
A PDF copy of a poster encouraging people to connect, one of the Five Ways to Wellbeing. The poster image depicts three 'All Righties' catching up over cakes and reads, "When did you last really catch up? Quality time with good friends can be the best medicine".
A video of an address by Ian Simpson, CEO of CERA, at the 2015 Seismics and the City forum. In this talk, Mr. Simpson shares his take on the progress of the rebuild, positive signs of advancement and what's in the pipeline; and how the main obstacles can be resolved.
Internal damage to a house in Richmond. A doorframe has visibly warped, leaving a gap between the frame and the door. Outside, cracks can be seen in the concrete patio. The photographer comments, "Sunroom - bifold doors are now separated from the frame. The doors on the left blew right out in a strong wind 2 weeks after the quake".
Trucks and diggers build large piles of liquefaction silt. One pile has been covered with plastic sheeting, weighted down with tyres. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
Trucks and diggers build large piles of liquefaction silt. One pile has been covered with plastic sheeting, weighted down with tyres. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
One landscape colour digital photograph taken on 27 April 2011 showing the demolition of the Harbourlight Theatre on London Street. In the background of the photo the damage to headstones in the Roman Catholic and Dissenters sections of the cemetery on Reserve Terrace can be seen. Architect In Christchurch's Central Business District many of the...
Closeup of the Grand Chancellor showing the south eastern corner, which is where it has slumped and broken and is now leaning in that direction. I note that they have taken some equipment out of the roof, you can see daylight through the gaps on the other side. The broken windows are also clearly visible with curtains hanging in some of them. ...
Though generally considered “natural” disasters, cyclones and earthquakes are increasingly being associated with human activities, incubated through urban settlement patterns and the long-term redistribution of natural resources. As society is becoming more urbanized, the risk of human exposure to disasters is also rising. Architecture often reflects the state of society’s health: architectural damage is the first visible sign of emergency, and reconstruction is the final response in the process of recovery. An empirical assessment of architectural projects in post-disaster situations can lead to a deeper understanding of urban societies as they try to rebuild. This thesis offers an alternative perspective on urban disasters by looking at the actions and attitudes of disaster professionals through the lens of architecture, situated in recent events: the 2010 Christchurch earthquake, the 2010 Haiti earthquake, and the 2005 Hurricane Katrina. An empirical, multi-hazard, cross-sectional case study methodology was used, employing grounded theory method to build theory, and a critical constructivist strategy to inform the analysis. By taking an interdisciplinary approach to understanding disasters, this thesis positions architecture as a conduit between two divergent approaches to disaster research: the hazards approach, which studies the disaster cycles from a scientific perspective; and the sociological approach, which studies the socially constructed vulnerabilities that result from disasters, and the elements of social change that accompany such events. Few studies to date have attempted to integrate the multi-disciplinary perspectives that can advance our understanding of societal problems in urban disasters. To bridge this gap, this thesis develops what will be referred to as the “Rittelian framework”—based on the work of UC Berkeley’s architecture professor Horst Rittel (1930-1990). The Rittelian framework uses the language of design to transcend the multiple fields of human endeavor to address the “design problems” in disaster research. The processes by which societal problems are addressed following an urban disaster involve input by professionals from multiple fields—including economics, sociology, medicine, and engineering—but the contribution from architecture has been minimal to date. The main impetus for my doctoral thesis has been the assertion that most of the decisions related to reconstruction are made in the early emergency recovery stages where architects are not involved, but architects’ early contribution is vital to the long-term reconstruction of cities. This precipitated in the critical question: “How does the Rittelian framework contribute to the critical design decisions in modern urban disasters?” Comparative research was undertaken in three case studies of recent disasters in New Orleans (2005), Haiti (2010) and Christchurch (2010), by interviewing 51 individuals who were selected on the basis of employing the Rittelian framework in their humanitarian practice. Contextualizing natural disaster research within the robust methodological framework of architecture and the analytical processes of sociology is the basis for evaluating the research proposition that architectural problem solving is of value in addressing the ‘Wicked Problems’ of disasters. This thesis has found that (1) the nuances of the way disaster agents interpret the notion of “building back better” can influence the extent to which architectural professionals contribute in urban disaster recovery, (2) architectural design can be used to facilitate but also impede critical design decisions, and (3) framing disaster research in terms of design decisions can lead to innovation where least expected. This empirical research demonstrates how the Rittelian framework can inform a wider discussion about post-disaster human settlements, and improve our resilience through disaster research.
This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. The need to better understand the behaviour of diaphragms in timber buildings was highlighted by the recent 2010-2011 Canterbury Earthquake series, where a number of diaphragms in traditional concrete buildings performed poorly, compromising the lateral load resistance of the structure. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The recent demand of mid-rise commercial timber buildings of ten storeys and beyond has further highlighted the lack of appropriate methods to analyse timber diaphragms with irregular floor geometries and large spans made of both light timber framing and massive timber panels. Due to the lower stiffness of timber lateral load resisting systems, compared with traditional construction materials, and the addition of in-plane flexible diaphragms, the effect of higher modes on the global dynamic behaviour of a structure becomes more critical. The results from a parametric non-linear time-history analysis on a series of timber frame and wall structures showed increased storey shear and moment demands even for four storey structures when compared to simplistic equivalent static analysis. This effect could successfully be predicted with methods available in literature. The presence of diaphragm flexibility increased diaphragm inter-storey drifts and the peak diaphragm demand in stiff wall structures, but had less influence on the storey shears and moments. Diaphragm force demands proved to be significantly higher than the forces derived from equivalent static analysis, leading to potentially unsafe designs. It is suggested to design all diaphragms for the same peak demand; a simplified approach to estimate these diaphragm forces is proposed for both frame and wall structures. Modern architecture often requires complex floor geometries with long spans leading to stress concentrations, high force demands and potentially large deformations in the diaphragms. There is a lack of guidance and regulation regarding the analysis and design of timber diaphragms and a practical alternative to the simplistic equivalent deep beam analysis or costly finite element modelling is required. An Equivalent Truss Method for the analysis of both light timber framed and massive timber diaphragms is proposed, based on analytical formulations and verified against finite element models. With this method the panel unit shear forces (shear flow) and therefore the fastener demand, chord forces and reaction forces can be evaluated. Because the panel stiffness and fastener stiffness are accounted for, diaphragm deflection, torsional effects and transfer forces can also be assessed. The proposed analysis method is intuitive and can be used with basic analysis software. If required, it can easily be adapted for the use with diaphragms working in the non-linear range. Damage to floor diaphragms resulting from displacement incompatibilities due to frame elongation or out-of plane deformation of walls can compromise the transfer of inertial forces to the lateral load resisting system as well as the stability of other structural elements. Two post-tensioned timber frame structures under quasi-static cyclic and dynamic load, respectively, were tested with different diaphragm panel layouts and connections investigating their ability to accommodate frame elongations. Additionally, a post-tensioned timber wall was loaded under horizontal cyclic loads through two pairs of collector beams. Several different connection details between the wall and the beams were tested, and no damage to the collector beams or connections was observed in any of the tests. To evaluate the increased strength and stiffness due to the wall-beam interaction an analytical procedure is presented. Finally, a timber staircase core was tested under bi-directional loading. Different connection details were used to study the effect of displacement incompatibilities between the orthogonal collector beams. These experiments showed that floor damage due to displacement incompatibilities can be prevented, even with high levels of lateral drift, by the flexibility of well-designed connections and the flexibility of the timber elements. It can be concluded that the flexibility of timber members and the flexibility of their connections play a major role in the behaviour of timber buildings in general and of diaphragms specifically under seismic loads. The increased flexibility enhances higher mode effects and alters the diaphragm force demand. Simple methods are provided to account for this effect on the storey shear, moment and drift demands as well as the diaphragm force demands. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.
Members of the USAID Disaster Assistance Response Team and New Zealand Urban Search and Rescue Team in front of a collapsed house in the Christchurch central city. In the background, the Newstalk ZB Building can be seen.
Recently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.
Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).
The Cathedral of the Blessed Sacrament on Barbadoes Street, severely damaged after the 22 February 2011 earthquake. The domes on either side of the Cathedral have collapsed and are lying in the area in front. To the right, a crushed car can just be seen.
The Cathedral of the Blessed Sacrament on Barbadoes Street, severely damaged after the 22 February 2011 earthquake. The domes on either side of the Cathedral have collapsed and are lying in the area in front. To the right, a crushed car can just be seen.
A photograph of Brandon, Elizabeth Ackerman and Danica Nel on the site of a demolished building on Tuam Street. The trio can be seen wearing hard hats and florescent vests. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
Smoke billowing from the remains of the collapsed Canterbury Television Building on Madras Street. Flames are visible through a gap in the intact section of the building. Below, emergency personnel can be seen searching the rubble for trapped people. On the right, two workers are using a piece of corrugated plastic as a slide to remove objects from the rubble.
Emergency personnel searching for people trapped in the collapsed Canterbury Television Building on Madras Street. On the right, a man is using a sheet of corrugated plastic to slide pieces of debris off the building. Smoke is billowing from the remains of the building and a jet of water can be seen in the background, attempting to extinguish the fire.
A video of an address by Joanna Norris, Editor of The Press, at the 2015 Seismics and the City forum. In this talk, Ms. Norris shares her take on the progress of the rebuild, positive signs of advancement and what's in the pipeline; and how the main obstacles can be resolved.
In collaboration with Melbourne sound artist Malcolm Riddoch, the original recording has also been turned into an audio work entitled "Body Waves", which accentuates the lower frequency harmonics at a venue to create a piece that goes beyond the auditory system and can be felt in the body. This piece has been performed several times, including in New Zealand, Australia and Slovenia. Listen to it here: https://soundcloud.com/stanier-black-five/body-waves-i
A member of the New Zealand Search and Rescue team outside damaged stores on Tuam Street. The top storeys of the stores have almost entirely collapsed onto the street, bringing the awnings down. A digger is parked on the street, and another one can be seen demolishing a store behind it.