Search

found 1753 results

Articles, UC QuakeStudies

The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This report describes the earthquake hazard in Selwyn district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Porters Pass-Amberley Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This report describes the earthquake hazard in Timaru district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Mt Hutt-Mt Peel Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This report provides information on the locations and character of active geological faults and folds in Mackenzie District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of fault movement, and where more detailed investigations should be done if development is proposed in that area(depending on the potential activity of the fault and the type of development proposed). Most of the faults and folds identified at the ground surface in Mackenzie District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This report describes the earthquake hazard in Waimate and Mackenzie districts and the part of Waitaki district within Canterbury, and gives details of historic earthquakes. It includes district-scale (1:500,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.2-7.4 Ostler Fault earthquake near Twizel, a magnitude 8 Alpine Fault earthquake, and a magnitude 6.9 Hunters Hills Fault Zone earthquake near Waimate. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.

Articles, UC QuakeStudies

This report provided information on the location and character of the Ostler Fault Zone near Twizel. The fault traces, and associated recommended fault avoidance zones, were mapped in detail for inclusion in a District Plan Change for the Twizel area. The Ostler Fault Zone was mapped in detail because of the higher likelihood of movement on that fault than others in the district, and the potential for future development across the fault zone because of its proximity to Twizel. See Object Overview for background and usage information. The report recommended that the information be incorporated into the District Plan Change and that site-specific investigations be undertaken before development is allowed within the fault avoidance zones. These recommendations were taken up by Mackenzie District Council.

Articles, UC QuakeStudies

This study updated and superseded Earthquake hazard and risk assessment study Stage 1 Part A: Earthquake source identification and characterisation (Pettinga et al, 1998). It compiled and tabulated all relevant available information on earthquake sources in Canterbury and updated the active faults database with new fault locations and information. See Object Overview for background and usage information.

Research Papers, Lincoln University

New Zealand is one of the most highly urbanised countries in the world with well over 87 per cent of us living in 138 recognised urban centres, yet the number of people residing in inner city areas is proportionally very low. Householders have been exercising their preference for suburban or rural areas by opting for low density suburban environments. It is widely agreed that productivity and sustainability increase when people aggregate in the inner city, however there is a perceived trade-off between the density and liveability of an area. Achieving liveability in the inner city is concerned with reducing the pressures which emerge from higher population densities. Promoting inclusive societies, revitalising underutilised cityscapes, ensuring accessibility and fostering sense of place, are all elements essential to achieving liveable communities. The rebuild following the 2010 and 2011 Canterbury earthquakes provides Christchurch with an opportunity to shape a more environmentally sustainable, economically vibrant and liveable city. This research involves undertaking a case study of current inner city liveability measures and those provided for through the rebuild. A cross-case analysis with two of the world’s most liveable cities, Melbourne and Vancouver, exposes Christchurch’s potential shortcomings and reveals practical measures the city could implement in order to promote liveability.

Research papers, University of Canterbury Library

Tertiary students, not just working populations, might be experiencing feelings of burnout following the Christchurch earthquakes of 2010 and 2011. In the aftermath of a major disaster, the gap between the resources available to handle pressures (e.g., support) and the demands inherent in the pursuit of an academic degree (e.g., heavy workload) may lead to feelings of burnout among students. This study hypothesised that burnout dimensions (emotional exhaustion and disengagement) would be related to students’ perceptions of immediate institutional support, extended institutional support, peer support, family support, and work overload. Additionally, it was proposed that institutional and social support would moderate the relationship between work overload and burnout. Two hundred and seventy one third and fourth year students were sampled using an online questionnaire. These particular students were expected to be at greater risk of emotional exhaustion and academic disengagement because they were at the earliest stage of their tertiary education when the major earthquakes first hit. Family support and extended institutional support were found to be associated with decreased levels of emotional exhaustion and disengagement. Meanwhile, work overload was found to be related to increased levels of emotional exhaustion and disengagement. Furthermore, both peer support and immediate institutional support were found to have a moderating effect on the relationship between work overload and disengagement. This study has exposed unique findings which contribute to burnout research especially in a post-disaster context, and raises the importance of providing the right types of support for individuals who are particularly dealing with the consequences of a natural disaster.

Research papers, University of Canterbury Library

The University of Canterbury Dept. of Chemistry has weathered the Canterbury Earthquake of September 4, 2010 very well due to a combination of good luck, good planning and dedicated effort. We owe a great deal to university Emergency Response Team and Facilities Management Personnel. The overall emergency preparedness of the university was tested to a degree far beyond anything else in its history and shown to be well up to scratch. A strong cooperative relationship between the pan-campus controlling body and the departmental response teams greatly facilitated our efforts. Information and assistance was provided promptly, as and when we needed it without unnecessary bureaucratic overheads. At the departmental level we are indebted to the technical staff who implemented the invaluable pre-quake mitigation measures and carried the majority of the post-quake clean-up workload. These people put aside their personal concerns and anxieties at a time when magnitude-5 aftershocks were still a regular occurrence.

Research papers, University of Canterbury Library

This study explored the experiences of 10 leaders in their intentional six-month implementation, during the 2010-2011Christchurch earthquakes, of an adapted positive leadership model. The study concluded that the combination of strategies in the model provided psychological and participative safety for leaders to learn and to apply new ways of working. Contrary to other studies on natural disaster, workplace performance increased and absenteeism decreased. The research contributes new knowledge to the positive leadership literature and new understanding, from the perspective of leaders, of the challenges of leading in a workplace environment of ongoing natural disaster events.

Images, UC QuakeStudies

Three excavators sit on top of the demolition rubble where the Crowne Plaza Hotel once stood. In the background are the Forsyth Barr building (left), the Victoria Apartments (centre), and the Environment Court building (right).

Research papers, University of Canterbury Library

This paper presents the preliminary conclusions of the first stage of Wellington Case Study project (Regulating For Resilience in an Earthquake Vulnerable City) being undertaken by the Disaster Law Research Group at the University of Canterbury Law School. This research aims to map the current regulatory environment around improving the seismic resilience of the urban built environment. This work provides the basis for the second stage of the project which will map the regulatory tools onto the reality of the current building stock in Wellington. Using a socio-legal methodology, the current research examines the regulatory framework around seismic resilience for existing buildings in New Zealand, with a particularly focus on multi-storey in the Wellington CBD. The work focusses both on the operation and impact of the formal seismic regulatory tools open to public regulators (under the amended Building Act) as other non-seismic regulatory tools. As well as examining the formal regulatory frame, the work also provides an assessment of the interactions between other non-building acts (such as Health and Safety at Work Act 2015) on the requirements of seismic resilience. Other soft-law developments (particularly around informal building standards) are also examined. The final output of this work will presents this regulatory map in a clear and easily accessible manner and provide an assessment of the suitability of this at times confusing and patchy legal environment as Wellington moves towards becoming a resilient city. The final conclusion of this work will be used to specifically examine the ability of Wellington to make this transition under the current regulatory environment as phase two of the Wellington Case Study project.