A video of an interview with Andreas Duenser, research scientist at the Human Interface Technology Laboratory, about an earthquake simulator at the University of Canterbury. The simulator was developed to help treat people suffering from post-traumatic stress disorder after the 2010 and 2011 Canterbury earthquakes. It allows people to relive their earthquake experiences in a safe environment to help them overcome their ordeals.
Over the last six years, Canterbury residents have lived through two major earthquakes and thousands of aftershocks, with such events negatively impacting psychological health. Research shows rates of post-traumatic stress symptoms in children have doubled post-quake, and a classroom containing children who are experiencing chronically high physiological arousal has been shown to be a stressful environment for teachers. Such stress therefore negatively impacts teachers’ ability to sleep well, meaning many Christchurch teachers may suffer from insomnia, a debilitating condition leading to psychological distress and often comorbid with other mental health conditions. The present research sought to investigate the use of a broadspectrum micronutrient formula called EMPowerplus (EMP+) for chronic insomnia in teachers. This study examined the effect of EMP+ over an 8-10 week period using a multiple-baseline design with placebo. Seventeen teachers were randomized to one of three baseline sequences where they completed a one week baseline period, before receiving five, nine, or 14 days, of placebo as well as 8-10 weeks of the micronutrient formula. After completion of the trial, a three-month follow up was conducted. All participants completed the trial, and results showed a statistically reliable and clinically significant decrease in insomnia severity (Cohen’s dav = - 1.37), on at least one or more aspects of the sleep diary, and on emotional exhaustion (Cohen’s dav = -1.08). EMP+ also statistically significantly reduced insomnia severity compared to placebo (Cohen’s dav = -0.66). Statistically significant reduction was not seen in stress, anxiety and depression scores as compared to placebo, and these levels were not generally clinically raised to begin with. Sixteen out of 17 participants were compliant, and side effects were generally mild and transitory. The current study provides evidence for the beneficial effect of micronutrient supplementation on chronic insomnia in Christchurch teachers working in a stressful environment. Future research incorporating measurement of nutritional intake and proinflammatory biomarkers, as well as conducting comparisons to other conventional treatments, is recommended.
The Avon River and the Avon-Heathcote Estuary/Ihutai are features of the urban environment of Christchurch City and are popular for recreational and tourist activities. These include punting, rowing, organized yachting, water skiing, shoreline walking, bird watching, recreational fishing and aesthetic appreciation. The Canterbury earthquakes of 2010 and 2011 significantly affected the estuarine and river environments, affecting both the valued urban recreation resources and infrastructure. The aim of the research is to evaluate recreational opportunities using a questionnaire, assess levels of public participation in recreation between winter 2014 and summer 2014-2015 and evaluate the quality of recreational resources. The objective is to determine the main factors influencing recreational uses before and after the February 2011 earthquake and to identify future options for promoting recreational activities. Resource evaluation includes water quality, wildlife values, habitats, riparian strip and the availability of facilities and infrastructure. High levels of recreational participation usually occurred at locations that provided many facilities along with their suitability for family activities, scenic beauty, relaxation, amenities and their proximity to residences. Some locations included more land-based activities, while some included more water-based activities. There were greater opportunities for recreation in summer compared to winter. Activities that were negatively affected by the earthquake such as rowing, kayaking and sailing have resumed. But activities at some places may be limited due to the lack of proper tracks, jetty, public toilets and other facilities and infrastructure. Also, some locations had high levels of bacterial pollution, excessive growth of aquatic plants and a low number of amenity values. These problems need to be solved to facilitate recreational uses. In recovering from the earthquake, the enhancement of recreation in the river and the Estuary will lead to a better quality of life and the improved well-being and psychological health of Christchurch residents. It was concluded that the Avon River and the Avon-Heathcote Estuary/Ihutai continue to provide various opportunities of recreation for users.
None
OPINION: Associate Professor MARK QUIGLEY, from the University of Canterbury's department of geological sciences, and Dr MATTHEW HUGHES, from its department of civil and natural resources engineering, survey the changing landscape of post-quake Christchurch.
Since September 2010 Christchurch, New Zealand, has experienced a number of significant earthquakes. In addition to loss of life, this has resulted in significant destruction to infrastructure, including road corridors; and buildings, especially in the central city, where it has been estimated that 60% of buildings will need to be rebuilt. The rebuild and renewal of Christchurch has initially focused on the central city under the direction of the Christchurch City Council. This has seen the development of a draft Central City Plan that includes a number of initiatives that should encourage the use of the bicycle as a mode of transport. The rebuild and renewal of the remainder of the city is under the jurisdiction of a specially set up authority, the Christchurch Earthquake Recovery Authority (CERA). CERA reports to an appointed Minister for Canterbury Earthquake Recovery, who is responsible for coordinating the planning, spending, and actual rebuilding work needed for the recovery. Their plans for the renewal and rebuild of the remainder of the city are not yet known. This presentation will examine the potential role of the bicycle as a mode of transport in a rebuilt Christchurch. The presentation will start by describing the nature of damage to Christchurch as a result of the 2010 and 2011 earthquakes. It will then review the Central City Plan (the plan for the rebuild and renewal for central Christchurch) focusing particularly on those aspects that affect the role of the bicycle. The potential for the success of this plan will be assessed. It will specifically reflect on this in light of some recent research in Christchurch that examined the importance of getting infrastructure right if an aim of transport planning is to attract new people to cycle for utilitarian reasons.
Liquefaction affects late Holocene, loose packed and water saturated sediment subjected to cyclical shear stress. Liquefaction features in the geological record are important off-fault markers that inform about the occurrence of moderate to large earthquakes (> 5 Mw). The study of contemporary liquefaction features provides a better understanding of where to find past (paleo) liquefaction features, which, if identified and dated, can provide information on the occurrence, magnitude and timing of past earthquakes. This is particularly important in areas with blind active faults. The extensive liquefaction caused by the 2010-2011 Canterbury Earthquake Sequence (CES) gave the geoscience community the opportunity to study the liquefaction process in different settings (alluvial, coastal and estuarine), investigating different aspects (e.g. geospatial correlation with landforms, thresholds for peak ground acceleration, resilience of infrastructures), and to collect a wealth geospatial dataset in the broad region of the Canterbury Plains. The research presented in this dissertation examines the sedimentary architecture of two environments, the alluvial and coastal settings, affected by liquefaction during the CES. The novel aim of this study is to investigate how landform and subsurface sedimentary architecture influence liquefaction and its surface manifestation, to provide knowledge for locating studies of paleoliquefaction in future. Two study cases documented in the alluvial setting showed that liquefaction features affected a crevasse splay and point bar ridges. However, the liquefaction source layer was linked to paleochannel floor deposits below the crevasse splay in the first case, and to the point bar deposits themselves in the second case. This research documents liquefaction features in the coastal dune system of the Canterbury Plains in detail for the first time. In the coastal dune setting the liquefiable layer is near the surface. The pore water pressure is vented easily because the coastal dune soil profile is entirely composed of non-cohesive, very well sorted sandy sediment that weakly resists disturbance from fluidised sediment under pressure. As a consequence, the liquefied flow does not need to find a specific crack through which the sediment is vented at the surface; instead, the liquefied sand finds many closely spaced conduits to vent its excess of pore water pressure. Therefore, in the coastal dune setting it is rare to observe discrete dikes (as they are defined in the alluvial setting), instead A horizon delamination (splitting) and blistering (near surface sills) are more common. The differences in styles of surface venting lead to contrasts in patterns of ejecta in the two environments. Whereas the alluvial environment is characterised by coalesced sand blows forming lineations, the coastal dune environment hosts apparently randomly distributed isolated sand blows often associated with collapse features. Amongst the techniques tested for the first time to investigate liquefaction features are: 3D GPR, which improved the accuracy of the trenching even six years after the liquefaction events; thin section analysis to investigate sediment fabric, which helped to discriminate liquefied sediment from its host sediment, and modern from paleoliquefaction features; a Random Forest classification based on the CES liquefaction map, which was used to test relationships between surface manifestation of liquefaction and topographic parameters. The results from this research will be used to target new study sites for future paleoliquefaction research and thus will improve the earthquake hazard assessment across New Zealand.
This report describes the earthquake hazard in Waimate and Mackenzie districts and the part of Waitaki district within Canterbury, and gives details of historic earthquakes. It includes district-scale (1:500,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.2-7.4 Ostler Fault earthquake near Twizel, a magnitude 8 Alpine Fault earthquake, and a magnitude 6.9 Hunters Hills Fault Zone earthquake near Waimate. See Object Overview for background and usage information.
Christchurch and Canterbury suffered significant housing losses due to the earthquakes. Estimates from the Earthquake Commission (EQC) (2011) suggest that over 150,000 homes (around three quarters of Christchurch housing stock) sustained damage from the earthquakes. Some areas of Christchurch have been declared not suitable for rebuilding, affecting more than 7,500 residential properties.
This study determined areas of different liquefaction susceptibility in Hurunui District based mainly on geological data, with some limited borehole strata interpretation. Geotechnical data was not analysed. This was the same method used in the earthquake hazard assessments for engineering lifelines in other districts in Canterbury. Hurunui District was the first district that a hazard assessment for engineering lifelines was undertaken for (in 2000) and it did not include a liquefaction susceptibility map like the other district earthquake hazard assessments did. There are no recommendations associated with this report. See Object Overview for background and usage information.
The impact of the Canterbury earthquake sequence of 2010-12 and its aftermath has been enormous. This inventory lists some of the thousands of community-led groups and initiatives across the region that have developed or evolved as a result of the quake. This inventory is the third such inventory to have been produced. The Christchurch Earthquake Activity Inventory was released by Landcare Research in May 2011, three months after the devastating 22 February 2011 earthquake. The second inventory, entitled An Inventory of Community-led Recovery Initiatives in Canterbury, was collated by Bailey Peryman and Dr Suzanne Vallance (Lincoln University) approximately one year after the February earthquake. The research for this third inventory was undertaken over a four month period from June to September 2013, and was conducted primarily through online searches.This research was undertaken with funding support from the Natural Hazards Platform and GNS, New Zealand.
A photograph of a sign from the Christchurch City Council, ECan and the Canterbury District Health Board warning people over the contamination in the rivers after the September earthquake. The sign reads, "Warning, contaminated water. Due to sewage overflows this water is unsafe for human contact and activity and is a Public Health Risk. Please keep all people and pets out of contact with the water and do not consume any seafood or shellfish collected from this area". In the background, workers from Treetech clean up wood and leaves from felled trees.
The increase of the world's population located near areas prone to natural disasters has given rise to new ‘mega risks’; the rebuild after disasters will test the governments’ capabilities to provide appropriate responses to protect the people and businesses. During the aftermath of the Christchurch earthquakes (2010-2012) that destroyed much of the inner city, the government of New Zealand set up a new partnership between the public and private sector to rebuild the city’s infrastructure. The new alliance, called SCIRT, used traditional risk management methods in the many construction projects. And, in hindsight, this was seen as one of the causes for some of the unanticipated problems. This study investigated the risk management practices in the post-disaster recovery to produce a specific risk management model that can be used effectively during future post-disaster situations. The aim was to develop a risk management guideline for more integrated risk management and fill the gap that arises when the traditional risk management framework is used in post-disaster situations. The study used the SCIRT alliance as a case study. The findings of the study are based on time and financial data from 100 rebuild projects, and from surveying and interviewing risk management professionals connected to the infrastructure recovery programme. The study focussed on post-disaster risk management in construction as a whole. It took into consideration the changes that happened to the people, the work and the environment due to the disaster. System thinking, and system dynamics techniques have been used due to the complexity of the recovery and to minimise the effect of unforeseen consequences. Based on an extensive literature review, the following methods were used to produce the model. The analytical hierarchical process and the relative importance index have been used to identify the critical risks inside the recovery project. System theory methods and quantitative graph theory have been used to investigate the dynamics of risks between the different management levels. Qualitative comparative analysis has been used to explore the critical success factors. And finally, causal loop diagrams combined with the grounded theory approach has been used to develop the model itself. The study identified that inexperienced staff, low management competency, poor communication, scope uncertainty, and non-alignment of the timing of strategic decisions with schedule demands, were the key risk factors in recovery projects. Among the critical risk groups, it was found that at a strategic management level, financial risks attracted the highest level of interest, as the client needs to secure funding. At both alliance-management and alliance-execution levels, the safety and environmental risks were given top priority due to a combination of high levels of emotional, reputational and media stresses. Risks arising from a lack of resources combined with the high volume of work and the concern that the cost could go out of control, alongside the aforementioned funding issues encouraged the client to create the recovery alliance model with large reputable construction organisations to lock in the recovery cost, at a time when the scope was still uncertain. This study found that building trust between all parties, clearer communication and a constant interactive flow of information, established a more working environment. Competent and clear allocation of risk management responsibilities, cultural shift, risk prioritisation, and staff training were crucial factors. Finally, the post-disaster risk management (PDRM) model can be described as an integrated risk management model that considers how the changes which happened to the environment, the people and their work, caused them to think differently to ease the complexity of the recovery projects. The model should be used as a guideline for recovery systems, especially after an earthquake, looking in detail at all the attributes and the concepts, which influence the risk management for more effective PDRM. The PDRM model is represented in Causal Loops Diagrams (CLD) in Figure 8.31 and based on 10 principles (Figure 8.32) and 26 concepts (Table 8.1) with its attributes.
The Avon and Heathcote Rivers, located in the city of Christchurch, New Zealand, are lowland spring-fed rivers linked with the Christchurch Groundwater System. At present, the flow paths and recharge sources to the Christchurch Groundwater System are not fully understood. Study of both the Avon and Heathcote Rivers can provide greater insight into this system. In addition, during the period 2010-2012, Christchurch has experienced large amounts of seismic activity, including a devastating Mw 6.2 aftershock on February 22nd, 2011, which caused widespread damage and loss of life. Associated with these earthquakes was the release of large amounts of water through liquefaction and temporary springs throughout the city. This provided a unique opportunity to study groundwater surface water interactions following a large scale seismic event. Presented herein is the first major geochemical study on the Avon and Heathcote Rivers and the hydrological impact of the February 22, 2011 Christchurch Earthquake. The Avon, Heathcote, and Waimakariri Rivers were sampled in quarterly periods starting in July 2011 and analyzed for stable Isotopes δ¹⁸O, δD, and δ¹³C and major anion composition. In addition, post -earthquake samples were collected over the days immediately following the February 22, 2011 earthquake and analyzed for stable isotopes δ¹⁸O and δD and major anion composition. A variety of analytical methods were used identify the source of the waters in the Avon-Heathcote System and evaluate the effectiveness of stable isotopes as geochemical tracers in the Christchurch Groundwater System. The results of this thesis found that the waters from the Avon and Heathcote Rivers are geochemically the same, originating from groundwater, and exhibit a strong tidal influence within 5km of the Avon-Heathcote Estuary. The surface waters released following the February 22nd, 2011 earthquake were indistinguishable from quarterly samples taken from the Avon and Heathcote Rivers when comparing stable isotopic composition. The anion data suggests the waters released following the February 22nd, 2011 Christchurch Earthquake were sourced primarily from shallow groundwater, and also suggests a presence of urban sewage at some sites. Attempts to estimate recharge sources for the Avon-Heathcote Rivers using published models for the Christchurch Groundwater System yielded results that were not consistent between models. In evaluating the use of geochemical constituents as tracers in the Christchurch Groundwater System, no one isotope could provide a clear resolution, but when used in conjunction, δ¹⁸O, δ¹³C, and DIC, seem to be the most effective tracers. Sample sizes for δ¹³C were too small for a robust evaluation. Variability on the Waimakariri River appears to be greater than previously estimated, which could have significant impacts on geochemical models for the Christchurch Groundwater System. This research demonstrates the value of using multiple geochemical constituents to enrich our understanding of the groundwater surfaces-water interactions and the Christchurch Groundwater System as a whole.
The Mѡ=7.1 Darfield (Canterbury) earthquake struck on 4 September 2010, approximately 45 km west of Christchurch, New Zealand. It revealed a previously unknown fault (the Greendale fault) and caused billions of dollars of damage due to high peak ground velocities and extensive liquefaction. It also triggered the Mw=6.3 Christchurch earthquake on 22 February 2011, which caused further damage and the loss of 185 lives. The objective of this research was to determine the relationship between stress and seismic properties in a seismically active region using manually-picked P and S wave arrival times from the aftershock sequence between 8 September 2010-13 January 2011 to estimate shear-wave splitting (SWS) parameters, VP =VS-ratios, anisotropy (delay-time tomography), focal mechanisms, and tectonic stress on the Canterbury plains. The maximum horizontal stress direction was highly consistent in the plains, with an average value of SHmax=116 18 . However, the estimates showed variation in SHmax near the fault, with one estimate rotating by as much as 30° counter-clockwise. This suggests heterogeneity of stress at the fault, though the cause remains unclear. Orientations of the principal stresses predominantly indicate a strike-slip regime, but there are possible thrust regimes to the west and north/east of the fault. The SWS fast directions (ø) on the plains show alignment with SHmax at the majority of stations, indicating stress controlled anisotropy. However, structural effects appear more dominant in the neighbouring regions of the Southern Alps and Banks Peninsula.
In the wake of a series of devastating earthquakes, Christchurch, New Zealand is faced with a long, complicated mourning and memorialisation process. The initial intention of this research was to comparatively examine memorial design theory with popular memorial sentiment as expressed in Christchurch City Council's 'Share an Idea' initiative. The outcome of such an investigation was hypothesized to reveal conflicting perspectives which may potentially be reconciled by the development of a series of schematic models for memorial design. As the research was carried out, it became clear that any attempt to develop such models is counter-intuitive. This position is reinforced by the literature reviewed and the data examined. Subsequently, a fundamentally different approach to memorialisation focused on an active participation process is suggested.
Elevated levels of trace elements in the environment are of great concern because of their persistence, and their high potential to harm living organisms. The exposure of aquatic biota to trace elements can lead to bioaccumulation, and toxicity can result. Furthermore, the transfer of these elements through food chains can result in exposure to human consumers. Sea-fill or coastal fill sites are among the major anthropogenic sources of trace elements to the surrounding marine environment. For example, in the Maldives, Thilafushi Island is a sea-fill site consisting of assorted municipal solid waste, with multiple potential sources of trace elements. However, there is limited data on environmental trace element levels in the Maldives, and although seafood is harvested from close to this site, there is no existing data regarding trace element levels in Maldivian diets. Following the Christchurch earthquakes of 2011,
A video about the ten most influential people in The Press 2013 Power List. The top ten are Prime Minister John Key, Canterbury Earthquake Recovery Minister Gerry Brownlee, Kaiwhakahaere of Te Runanaga o Ngai Tahu Mark Soloman, EQC Chief Executive Ian Simpson, Environment Canterbury Chairperson Dame Margaret Bazley, CERA Chief Executive Roger Sutton, The Press Editor Joanna Norris, IAG Chief Executive Jacki Johnson, Tertiary Education Minister Steven Joyce, and Minister of Education Hekia Parata.
In this paper, we consider how religious leaders and Civil Defence authorities might collaborate to establish a two-way information conduit during the aftermath of a disaster. Using surveys and in-person interviews, clergy in different Christian denominations were asked about their roles in the earthquake, the needs of their congregations and the possibilities and obstacles to deeper collaboration with Civil Defence authorities.
Group case study report prepared for lecturers Ton Buhrs and Roy Montgomery by students of ERST 635 at Lincoln University, 2013.The New Zealand Government’s decision to establish a unitary authority in the Auckland Region has provided much of the context and impetus for this review of current governance arrangements in the Canterbury region, to determine whether or not they are optimal for taking the communities of greater Christchurch into the future. A number of local governance academics, as well as several respected political pundits, have prophesised that the Auckland ‘Super City’ reforms of 2009 will have serious implications and ramifications for local governance arrangements in other major cities, particularly Wellington and Christchurch. Wellington councils have already responded to the possibility of change by undertaking a series of reports on local governance arrangements, as well as a major review led by Sir Geoffrey Palmer, to investigate options for governance reform. Alongside these developments, the Christchurch earthquakes beginning in September 2010 have raised a myriad of new and complex governance issues, which may or may not be able to be addressed under the status quo, while the replacement of Regional Councillors’ with centrally-appointed Commissioners is suggestive of government dissatisfaction with current arrangements. With these things in mind, the research group has considered local government in Canterbury and the greater Christchurch area in the wider governance context. It does not limit discussion to only the structure of local government in Canterbury but rather, as the brief (Appendix 1) indicates, considers more broadly the relationship between central, regional, and local tiers of government, as well as the relationship between local government and local communities.
The Canterbury earthquakes of 2010 and 2011 caused significant damage and disruption to the city of Christchurch, New Zealand. A Royal Commission was established to report on the causes of building failure as a result of the earthquakes as well as look at the legal and best-practice requirements for buildings in New Zealand Central Business Districts. The Royal Commission made 189 recommendations on a variety of matters including managing damaged buildings after an earthquake, the adequacy of building codes and standards, and the processes of seismic assessments of existing buildings to determine their earthquake vulnerability. In response the Ministry of Business, Innovation and Employment, the agency responsible for administering building regulation in New Zealand, established a work programme to assist with the Canterbury rebuild and to implement the lessons learned throughout New Zealand. The five primary work streams in the programme are: • Facilitating the Canterbury Rebuild • Structural Performance and Design Standards • Geotechnical and structural guidance • Existing Building Resilience • Post Disaster Building Management This paper provides more detail on each of the work streams. There has been significant collaboration between the New Zealand Government and the research community, technical societies, and engineering consultants, both within New Zealand and internationally, to deliver the programme and improve the resilience of the New Zealand built environment. This has presented major challenges for an extremely busy industry in the aftermath of the Canterbury earthquakes. The paper identifies the items of work that have been completed and the work that is still in progress at the time of writing.
This report focuses on the Waimakariri District Council's approach to earthquake recovery which was developed as an Integrated, Community-based Recovery Framework. This approach has been held up as exemplary in a number of fora and has received a great deal of interest and support both nationally and internationally. It has evolved as a result of the September earthquake and the thousands of aftershocks that have followed, along with the regulatory changes that have impacted on building safety and land availability since, but it builds on a set of pre-existing competencies and a well-established organisational culture that focusses on: * Working with communities and each other; * Keeping people informed; * Doing better everyday; * Taking responsibility; * Acting with integrity, honesty and trust. The report identifies, and speaks to, three themes or tensions drawn from either the disaster/emergency management literature or actual cases of recovery practice observed here in Canterbury over the last 2 years. These themes are the: 1. unique position of local government to undertake integrated or ‘holistic’ recovery work with community at the centre, versus the lack of clarity around both community and local government’s role in disaster recovery; 2. general consensus that good local government-community relationships are crucial to recovery processes, versus the lack of practical advice on how best to engage, and engage with, communities post-disaster; and 3. balancing Business as Usual (BaU) with recovery issues.Ministry of Civil Defence and Emergency Management.
The New Zealand city of Christchurch suffered a series of devastating earthquakes in 2010-11 that changed the urban landscape forever. A new rebuilt city is now underway, largely based on the expressed wishes of the populace to see Christchurch return to being a more people-oriented, cycle-friendly city that it was known for in decades past. Currently 7% of commuters cycle to work, supported by a 200km network of mostly conventional on-road painted cycle lanes and off-road shared paths. The new "Major Cycleways" plan aims to develop approximately 100km of high-quality cycling routes throughout the city in 5-7 years. The target audience is an unaccompanied 10-year-old cycling, which requires more separated cycleways and low-volume/speed "neighbourhood greenways" to meet this standard. This presentation summarises the steps undertaken to date to start delivering this network. Various pieces of research have helped to identify the types of infrastructure preferred by those currently not regularly cycling, as well as helping to assess the merits of different route choices. Conceptual cycleway guidelines have now been translated into detailed design principles for the different types of infrastructure being planned. While much of this work is based on successful designs from overseas, including professional advice from Dutch practitioners, an interesting challenge has been to adapt these designs as required to suit local road environments and road user expectations. The first parts of the new network are being rolled out now, with the hope that this will produce an attractive and resilient network for the future population that leads to cycling being a major part of the local way of life.
Stage IV of the Christchurch liquefaction study updated the Stage II liquefaction hazard and ground damage maps with further data collected from other organisations, and included two additional maps indicating liquefaction sensitivity to groundwater levels. Stage IVa of the Christchurch liquefaction study used revised groundwater levels and adjustments to the liquefaction prediction algorithm. The outputs of the report were liquefaction hazard and ground damage maps for both average summer (low) and average winter (high) groundwater levels. The maps produced as part of Stage IVa of the report were subsequently included in an Environment Canterbury public education poster The Solid Facts on Christchurch Liquefaction which also contained information on how liquefaction occurs and what can be done to mitigate the liquefaction hazard. Stage IV of the Christchurch liquefaction study contained a number of recommendations to improve the liquefaction potential and ground damage maps for Christchurch. See Object Overview for background and usage information.
Coastal margins are exposed to rising sea levels that present challenging circumstances for natural resource management. This study investigates a rare example of tectonic displacement caused by earthquakes that generated rapid sea-level change in a tidal lagoon system typical of many worldwide. This thesis begins by evaluating the coastal squeeze effects caused by interactions between relative sea-level (RSL) rise and the built environment of Christchurch, New Zealand, and also examples of release from similar effects in areas of uplift where land reclamations were already present. Quantification of area gains and losses demonstrated the importance of natural lagoon expansion into areas of suitable elevation under conditions of RSL rise and showed that they may be necessary to offset coastal squeeze losses experienced elsewhere. Implications of these spatial effects include the need to provide accommodation space for natural ecosystems under RSL rise, yet other land-uses are likely to be present in the areas required. Consequently, the resilience of these environments depends on facilitating transitions between human land-uses either proactively or in response to disaster events. Principles illustrated by co-seismic sea-level change are generally applicable to climate change adaptation due to the similarity of inundation effects. Furthermore, they highlight the potential role of non-climatic factors in determining the overall trajectory of change. Chapter 2 quantifies impacts on riparian wetland ecosystems over an eight year period post- quake. Coastal wetlands were overwhelmed by RSL rise and recovery trajectories were surprisingly slow. Four risk factors were identified from the observed changes: 1) the encroachment of anthropogenic land-uses, 2) connectivity losses between areas of suitable elevation, 3) the disproportionate effect of larger wetland vulnerabilities, and 4) the need to protect new areas to address the future movement of ecosystems. Chapter 3 evaluates the unique context of shoreline management on a barrier sandspit under sea-level rise. A linked scenario approach was used to evaluate changes on the open coast and estuarine shorelines simultaneously and consider combined effects. The results show dune loss from a third of the study area using a sea-level rise scenario of 1 m over 100 years and with continuation of current land-uses. Increased exposure to natural hazards and accompanying demand for seawalls is a likely consequence unless natural alternatives can be progressed. In contrast, an example of managed retreat following earthquake-induced subsidence of the backshore presents a new opportunity to restart saltmarsh accretion processes seaward of coastal defences with the potential to reverse decades of degradation and build sea-level rise resilience. Considering both shorelines simultaneously highlights the existence of pinch-points from opposing forces that result in small land volumes above the tidal range. Societal adaptation is delicately poised between the paradigms of resisting or accommodating nature and challenged by the long perimeter and confined nature of the sandspit feature. The remaining chapters address the potential for salinity effects caused by tidal prism changes with a focus on the conservation of īnanga (Galaxias maculatus), a culturally important fish that supports New Zealand‘s whitebait fishery. Methodologies were developed to test the hypothesis that RSL changes would drive a shift in the distribution of spawning sites with implications for their management. Chapter 4 describes a new practical methodology for quantifying the total productivity and spatiotemporal variability of spawning sites at catchment scale. Chapter 5 describes the novel use of artificial habitats as a detection tools to help overcome field survey limitations in degraded environments where egg mortality can be high. The results showed that RSL changes resulted in major shifts in spawning locations and these were associated with new patterns of vulnerability due to the continuation of pre-disturbance land-uses. Unexpected findings includes an improved understanding of the spatial relationship between salinity and spawning habitat, and identification of an invasive plant species as important spawning habitat, both with practical management implications. To conclude, the design of legal protection mechanisms was evaluated in relation to the observed habitat shifts and with a focus on two new planning initiatives that identified relatively large protected areas (PAs) in the lower river corridors. Although the larger PAs were better able to accommodate the observed habitat shifts inefficiencies were also apparent due to spatial disparities between PA boundaries and the values requiring protection. To reduce unnecessary trade-offs with other land-uses, PAs of sufficient size to cover the observable spatiotemporal variability and coupled with adaptive capacity to address future change may offer a high effectiveness from a network of smaller PAs. The latter may be informed by both monitoring and modelling of future shifts and these are expected to include upstream habitat migration driven by the identified salinity relationships and eustatic sea-level rise. The thesis concludes with a summary of the knowledge gained from this research that can assist the development of a new paradigm of environmental sustainability incorporating conservation and climate change adaptation. Several promising directions for future research identified within this project are also discussed.
Billy Kristian of The Invaders shares his memories of Ray Columbus who has died at the age of 74. Islay Marsden of the University of Canterbury discusses what clearing rocks and silt from quake-induced landslides will do to the coastal environment. Kevin Furlong of Penn State University discusses the connection between the earthquakes and various faultline systems.
Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.
There is a now a rich literature on the connections between digital media, networked computing, and the shaping of urban material cultures. Much less has addressed the post-disaster context, like we face in Christchurch, where it is more a case of re-build rather than re-new. In what follows I suggest that Lev Manovich’s well-known distinction between narrative and database as distinct but related cultural forms is a useful framework for thinking about the Christchurch rebuild, and perhaps urbanism more generally.
A PDF copy of pages 46-47 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Central Station: Temporary Bus Exchange'. Photo: Tim Church. With permission: Christchurch City Council.
A PDF copy of pages 48-49 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Reconstruction: Conversations on a City'. Photo: Tim Church. With permission: Christchurch City Council.