A photograph of a member of the New Zealand Army standing in front of an army truck on the corner of Barbadoes and Armagh Streets. In the background, a portaloo can be seen.
These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.
In response to the February 2011 earthquake, Parliament enacted the Canterbury Earthquake Recovery Act. This emergency legislation provided the executive with extreme powers that extended well beyond the initial emergency response and into the recovery phase. Although New Zealand has the Civil Defence Emergency Management Act 2002, it was unable to cope with the scale and intensity of the Canterbury earthquake sequence. Considering the well-known geological risk facing the Wellington region, this paper will consider whether a standalone “Disaster Recovery Act” should be established to separate an emergency and its response from the recovery phase. Currently, Government policy is to respond reactively to a disaster rather than proactively. In a major event, this typically involves the executive being given the ability to make rules, regulations and policy without the delay or oversight of normal legislative process. In the first part of this paper, I will canvas what a “Disaster Recovery Act” could prescribe and why there is a need to separate recovery from emergency. Secondly, I will consider the shortfalls in the current civil defence recovery framework which necessitates this kind of heavy governmental response after a disaster. In the final section, I will examine how
Natural hazards continue to have adverse effects on communities and households worldwide, accelerating research on proactively identifying and enhancing characteristics associated with resilience. Although resilience is often characterized as a return to normal, recent studies of postdisaster recovery have highlighted the ways in which new opportunities can emerge following disruption, challenging the status quo. Conversely, recovery and reconstruction may serve to reinforce preexisting social, institutional, and development pathways. Our understanding of these dynamics is limited however by the small number of practice examples, particularly for rural communities in developed nations. This study uses a social–ecological inventory to document the drivers, pathways, and mechanisms of resilience following a large-magnitude earthquake in Kaikōura, a coastal community in Aotearoa New Zealand. As part of the planning and implementation phase of a multiyear project, we used the tool as the basis for indepth and contextually sensitive analysis of rural resilience. Moreover, the deliberate application of social–ecological inventory was the first step in the research team reengaging with the community following the event. The inventory process provided an opportunity for research partners to share their stories and experiences and develop a shared understanding of changes that had taken place in the community. Results provide empirical insight into reactions to disruptive change associated with disasters. The inventory also informed the design of targeted research collaborations, established a platform for longer-term community engagement, and provides a baseline for assessing longitudinal changes in key resilience-related characteristics and community capacities. Findings suggest the utility of social–ecological inventory goes beyond natural resource management, and that it may be appropriate in a range of contexts where institutional, social, and economic restructuring have developed out of necessity in response to felt or anticipated external stressors.
he 2016 Building (Earthquake Prone Building) Amendment Act aims to improve the system for managing earthquake-prone buildings. The proposed changes to the Act were precipitated by the Canterbury earthquakes, and the need to improve the seismic safety of New Zealand’s building stock. However, the Act has significant ramifications for territorial authorities, organisations and individuals in small New Zealand towns, since assessing and repairing heritage buildings poses a major cost to districts with low populations and poor rental returns on commercial buildings.
A photograph of members of the New Zealand Army sitting on a couch made out of a mattress and base as they guard a cordon in Christchurch. A cat has come to say hello.
A photograph of members of the New Zealand Police in high-visibility vests and hard hats walking down Barbadoes Street. In the distance, a dome of the Cathedral of the Blessed Sacrament can be seen.
A photograph of a member of the New Zealand Army on the roof of an earthquake-damaged property in Christchurch. A tarpaulin has been placed over a hole in the roof caused by the collapsed chimney.
After my visit at the hospital for physiotherapy on my hand I took a walk around the city on my way home. Demolition of the Victoria Square apartments February 12, 2014 Christchurch New Zealand. www.s...
A magazine article which outlines the observations of engineers working on SCIRT retaining wall and ground improvement projects.
Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.
We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).
An article from the Media Studies Journal of Aotearoa New Zealand Volume 14, Number 1. The article is titled, "Quake Aftermath: Christchurch journalists' collective trauma experience and the implications for their reporting". It was written by Sean Scanlon.
A photograph of a graffiti-style mural promoting careers in the New Zealand Police. The mural depicts a police officer pulling a woman from the rubble, and is captioned, "You too can do something extraordinary. Become a cop".
A photograph of emergency management personnel inside a Royal New Zealand Air Force Hercules C-130. The aircraft is on the runway at Wellington airport. Blankets and other supplies have been stacked in the centre of the aircraft.
A photograph of emergency management personnel inside a Royal New Zealand Air Force Hercules C-130. The aircraft is on the runway at Wellington airport. Blankets and other supplies have been stacked in the centre of the aircraft.
Photos from Aotea Square during the two minutes' silence held around New Zealand on March 1, 2011 at 12.51pm File ref: CCL-2011-03-01-Earthquake-Silence-Auckland-staff From the collection of Christchurch City Libraries
Demolition of the old Millers building is just about complemented. On my walk around the city in the rain.. thought it may have stopped.. but didn't so I just kept walking! June 12, 2014 Christchurch New Zealand.
A photograph of members of the Wellington Emergency Management Office Emergency Response Team and the New Zealand Police standing on the corner of Worcester and Barbadoes Streets. In the background several emergency response vehicles are parked on the street.
Photos from Aotea Square during the two minutes' silence held around New Zealand on March 1, 2011 at 12.51pm File ref: CCL-2011-03-01-Earthquake-Silence-Auckland-staff-2 From the collection of Christchurch City Libraries
A video of a presentation by Margaret Moreton during the Community and Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Community and Social Service Organisations in Emergencies and Disasters in Australia and New Zealand".
An article from the Media Studies Journal of Aotearoa New Zealand Volume 14, Number 1. The article is titled, "Social Media, Crisis Mapping and the Christchurch Earthquakes of 2011". It was written by Abi Beatson, Angi Buettner, and Tony Schirato.
A photograph of a graffiti image originally used to advertise careers with the New Zealand Police. The photograph is captioned by BeckerFraserPhotos, "This sign remains painted on the wall, although the other version of it has been painted out".
A photograph of members of the Wellington Emergency Management Office Emergency Response Team in the back of a New Zealand Army truck. The ERT members are in Christchurch to help out in the emergency response to the 22 February 2011 earthquake.
Photograph captioned by BeckerFraserPhotos, "105 Kingsford Street, Horseshoe Lake. Many of the homes here have been sold to the government or insurance companies and their former owners have moved out to other areas of Christchurch, New Zealand or overseas".
A photograph of emergency management staff meeting outside the Christchurch Art Gallery. The art gallery was used as the temporary Civil Defence headquarters after the 22 February 2011 earthquake. In the background, a New Zealand Fire Service truck can be seen.
The September Canterbury earthquake. These pictures were taken of The New Zealand Army, along with Police, minding the cordons. This was beside The Press building, and behind the Christchurch Cathedral. Note: these photos were taken on a cellphone; mind the quality.
I am going away for a short time for a holiday and well get back to you all when I get home. Demotion of the Victoria Sq apartments on a walk around the city Feb 26, 2014 Christchurch New Zealand. www...
An abstract which describes the content of Kristen MacAskill's full PhD thesis.
This poster presents work to date on ground motion simulation validation and inversion for the Canterbury, New Zealand region. Recent developments have focused on the collection of different earthquake sources and the verification of the SPECFEM3D software package in forward and inverse simulations. SPECFEM3D is an open source software package which simulates seismic wave propagation and performs adjoint tomography based upon the spectral-element method. Figure 2: Fence diagrams of shear wave velocities highlighting the salient features of the (a) 1D Canterbury velocity model, and (b) 3D Canterbury velocity model. Figure 5: Seismic sources and strong motion stations in the South Island of New Zealand, and corresponding ray paths of observed ground motions. Figure 3: Domain used for the 19th October 2010 Mw 4.8 case study event including the location of the seismic source and strong motion stations. By understanding the predictive and inversion capabilities of SPECFEM3D, the current 3D Canterbury Velocity Model can be iteratively improved to better predict the observed ground motions. This is achieved by minimizing the misfit between observed and simulated ground motions using the built-in optimization algorithm. Figure 1 shows the Canterbury Velocity Model domain considered including the locations of small-to-moderate Mw events [3-4.5], strong motion stations, and ray paths of observed ground motions. The area covered by the ray paths essentially indicates the area of the model which will be most affected by the waveform inversion. The seismic sources used in the ground motion simulations are centroid moment tensor solutions obtained from GeoNet. All earthquake ruptures are modelled as point sources with a Gaussian source time function. The minimum Mw limit is enforced to ensure good signal-to-noise ratio and well constrained source parameters. The maximum Mw limit is enforced to ensure the point source approximation is valid and to minimize off-fault nonlinear effects.