Search

found 1681 results

Research papers, The University of Auckland Library

The Christchurch earthquakes have highlighted the importance of low-damage structural systems for minimising the economic impacts caused by destructive earthquakes. Post-tensioned precast concrete walls have been shown to provide superior seismic resistance to conventional concrete construction by minimising structural damage and residual drifts through the use of a controlled rocking mechanism. The structural response of unbonded post-tensioned precast concrete wall systems, with and without additional energy dissipating elements, were investigated by means of pseudo-static cyclic, snap back and forced vibration testing with shake table testing to be completed. Two types of post-tensioned rocking wall system were investigated; a single unbonded post-tensioned precast concrete wall or Single Rocking Wall (SRW) and a system consisting of a Precast Wall with End Columns (PreWEC). The equivalent viscous damping (EVD) was evaluated using both the pseudo-static cyclic and snap back test data for all wall configurations. The PreWEC configurations showed an increase in EVD during the snap back tests in comparison to the cyclic test response. In contrast the SRW showed lower EVD during the snap back tests in comparison to the SRW cyclic test response. Despite residual drifts measured during the pseudo-static cyclic tests, negligible residual drift was measured following the snap back tests, highlighting the dynamic shake-down that occurs during the free vibration decay. Overall, the experimental tests provided definitive examples of the behaviour of posttensioned wall systems and validated their superior performance compared to reinforced concrete construction when subjected to large lateral drifts.

Images, UC QuakeStudies

A house on Canterbury Street in Lyttelton with a damaged outer wall. The bricks have fallen away to expose the insulation. Cracks can be seen running diagonally along the remaining wall. Fencing and tape have been placed around the building to warn people off.

Research papers, The University of Auckland Library

During the 2010/2011 Canterbury earthquakes, several reinforced concrete (RC) walls in multi-storey buildings formed a single crack in the plastic hinge region as opposed to distributed cracking. In several cases the crack width that was required to accommodate the inelastic displacement of the building resulted in fracture of the vertical reinforcing steel. This type of failure is characteristic of RC members with low reinforcement contents, where the area of reinforcing steel is insufficient to develop the tension force required to form secondary cracks in the surrounding concrete. The minimum vertical reinforcement in RC walls was increased in NZS 3101:2006 with the equation for the minimum vertical reinforcement in beams also adopted for walls, despite differences in reinforcement arrangement and loading. A series of moment-curvature analyses were conducted for an example RC wall based on the Gallery Apartments building in Christchurch. The analysis results indicated that even when the NZS 3101:2006 minimum vertical reinforcement limit was satisfied for a known concrete strength, the wall was still susceptible to sudden failure unless a significant axial load was applied. Additionally, current equations for minimum reinforcement based on a sectional analysis approach do not adequately address the issues related to crack control and distribution of inelastic deformations in ductile walls.