Search

found 158 results

Research papers, University of Canterbury Library

The earthquake engineering community is currently grappling with the need to improve the post-earthquake reparability of buildings. As part of this, proposals exist to change design criteria for the serviceability limit state (SLS). This paper reviews options for change and considers how these could impact the expected repair costs for typical New Zealand buildings. The expected annual loss (EAL) is selected as a relevant measure or repair costs and performance because (i) EAL provides information on the performance of a building considering a range of intensity levels, (ii) the insurance industry refers to EAL when setting premiums, and (iii) monetary losses are likely to be correlated with loss of building functionality. The paper argues that because the expected annual loss is affected by building performance over a range of intensity levels, the definition of SLS criteria alone may be insufficient to effectively limit losses. However, it is also explained that losses could be limited effectively if the loadings standard were to set the SLS design intensity considering the potential implications on EAL. It is shown that in order to achieve similar values of EAL in Wellington and Christchurch, the return period intensity for SLS design would need to be higher in Christchurch owing to differences in local hazard conditions. The observations made herein are based on a simplified procedure for EAL estimation and hence future research should aim to verify the findings using a detailed loss assessment approach applied to a broad range of case study buildings.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research Papers, Lincoln University

The 2013 Seddon earthquake (Mw 6.5), the 2013 Lake Grassmere earthquake (Mw 6.6), and the 2016 Kaikōura earthquake (Mw 7.8) provided an opportunity to assemble the most extensive damage database to wine storage tanks ever compiled worldwide. An overview of this damage database is presented herein based on the in-field post-earthquake damage data collected for 2058 wine storage tanks (1512 legged tanks and 546 flat-based tanks) following the 2013 earthquakes and 1401 wine storage tanks (599 legged tanks and 802 flat-based tanks) following the 2016 earthquake. Critique of the earthquake damage database revealed that in 2013, 39% and 47% of the flat-based wine tanks sustained damage to their base shells and anchors respectively, while due to resilience measures implemented following the 2013 earthquakes, in the 2016 earthquake the damage to tank base shells and tank anchors of flat-based wine tanks was reduced to 32% and 23% respectively and instead damage to tank barrels (54%) and tank cones (43%) was identified as the two most frequently occurring damage modes for this type of tank. Analysis of damage data for legged wine tanks revealed that the frame-legs of legged wine tanks sustained the greatest damage percentage among different parts of legged tanks in both the 2013 earthquakes (40%) and in the 2016 earthquake (44%). Analysis of damage data and socio-economic findings highlight the need for industry-wide standards, which may have socio-economic implications for wineries.

Research papers, University of Canterbury Library

Light timber framed (LTF) structures provide a cost-effective and structurally efficient solution for low-rise residential buildings. This paper studies seismic performance of single-storey LTF buildings sheathed by gypsum-plasterboards (GPBs) that are a typical lining product in New Zealand houses. Compared with wood-based structural panels, GPBs tend to be more susceptible to damage when they are used in bracing walls to resist earthquake loads. This study aims to provide insights on how the bracing wall irregularity allowed by the current New Zealand standard NZS 3604 and the in-plane rigidity of ceiling diaphragms affect the overall seismic performance of these GPB-braced LTF buildings. Nonlinear time-history analyses were conducted on a series of single-storey baseline buildings with different levels of bracing wall irregularities and ceiling diaphragm rigidity. The results showed significant torsional effect caused by the eccentric bracing wall layout with semi-rigid/rigid ceiling diaphragms. On average, bracing wall drift demand caused by the extreme bracing wall irregularities was three times of that in the regular bracing wall layout under the rigid diaphragm assumption. This finding agreed well with the house survey after the 2011 Canterbury Earthquake in which significantly more damage was observed in the houses with irregular bracing wall layouts and relatively rigid diaphragms. Therefore, it is recommended to limit the level of bracing wall eccentricity and ensure the sufficiently rigid diaphragms to avoid excessive damage in these LTF buildings in future events.

Audio, Radio New Zealand

Hon PAULA BENNETT to the Prime Minister: Does she stand by all her Government’s statements, policies, and actions? Hon JAMES SHAW to the Minister of Finance: Does he think that an independent Parliamentary Budget Office will improve the standard of democratic debate? Hon MARK MITCHELL to the Minister of Immigration: Does he stand by all his statements and actions in relation to Karel Sroubek? Hon DAVID BENNETT to the Minister of Corrections: Does he stand by his statement “We have never had to manage a prisoner like this before”, in relation to the alleged Christchurch gunman? Dr DUNCAN WEBB to the Minister responsible for the Earthquake Commission: What recent announcement has he made regarding quake-damaged homes in Canterbury? Hon Dr NICK SMITH to the Minister of Justice: Does he stand by all his statements, policies, and actions on electoral law and referenda? Dr SHANE RETI to the Minister of Health: Does he stand by all his statements, policies, and actions around vaccination? RINO TIRIKATENE to the Minister of Health: What progress, if any, has been made in modernising New Zealand’s fleet of air ambulances? Hon PAULA BENNETT to the Prime Minister: Does she stand by all her Government’s statements, policies, and actions? Dr SHANE RETI to the Minister of Education: Does he stand by all his statements, policies, and actions around the Reform of Vocational Education? GINNY ANDERSEN to the Minister of Commerce and Consumer Affairs: What reports has he seen about responses to the draft report of the Commerce Commission on the New Zealand fuel market? BRETT HUDSON to the Associate Minister of Transport: What is the petrol price exclusive of taxes and carbon charges assumed in the reference scenario in the preliminary cost-benefit analysis of the Clean Car Discount for August 2019, and how does this compare to the actual present petrol price exclusive of taxes and carbon charges?

Research papers, University of Canterbury Library

Since the early 1980s seismic hazard assessment in New Zealand has been based on Probabilistic Seismic Hazard Analysis (PSHA). The most recent version of the New Zealand National Seismic Hazard Model, a PSHA model, was published by Stirling et al, in 2012. This model follows standard PSHA principals and combines a nation-wide model of active faults with a gridded point-source model based on the earthquake catalogue since 1840. These models are coupled with the ground-motion prediction equation of McVerry et al (2006). Additionally, we have developed a time-dependent clustering-based PSHA model for the Canterbury region (Gerstenberger et al, 2014) in response to the Canterbury earthquake sequence. We are now in the process of revising that national model. In this process we are investigating several of the fundamental assumptions in traditional PSHA and in how we modelled hazard in the past. For this project, we have three main focuses: 1) how do we design an optimal combination of multiple sources of information to produce the best forecast of earthquake rates in the next 50 years: can we improve upon a simple hybrid of fault sources and background sources, and can we better handle the uncertainties in the data and models (e.g., fault segmentation, frequency-magnitude distributions, time-dependence & clustering, low strain-rate areas, and subduction zone modelling)? 2) developing revised and new ground-motion predictions models including better capturing of epistemic uncertainty – a key focus in this work is developing a new strong ground motion catalogue for model development; and 3) how can we best quantify if changes we have made in our modelling are truly improvements? Throughout this process we are working toward incorporating numerical modelling results from physics based synthetic seismicity and ground-motion models.

Research papers, University of Canterbury Library

The New Zealand city of Christchurch suffered a series of devastating earthquakes in 2010-11 that changed the urban landscape forever. A new rebuilt city is now underway, largely based on the expressed wishes of the populace to see Christchurch return to being a more people-oriented, cycle-friendly city that it was known for in decades past. Currently 7% of commuters cycle to work, supported by a 200km network of mostly conventional on-road painted cycle lanes and off-road shared paths. The new "Major Cycleways" plan aims to develop approximately 100km of high-quality cycling routes throughout the city in 5-7 years. The target audience is an unaccompanied 10-year-old cycling, which requires more separated cycleways and low-volume/speed "neighbourhood greenways" to meet this standard. This presentation summarises the steps undertaken to date to start delivering this network. Various pieces of research have helped to identify the types of infrastructure preferred by those currently not regularly cycling, as well as helping to assess the merits of different route choices. Conceptual cycleway guidelines have now been translated into detailed design principles for the different types of infrastructure being planned. While much of this work is based on successful designs from overseas, including professional advice from Dutch practitioners, an interesting challenge has been to adapt these designs as required to suit local road environments and road user expectations. The first parts of the new network are being rolled out now, with the hope that this will produce an attractive and resilient network for the future population that leads to cycling being a major part of the local way of life.

Audio, Radio New Zealand

MAGGIE BARRY to the Minister of Finance: What reports has he received on the economy? Rt Hon WINSTON PETERS to the Minister of Māori Affairs: Is he satisfied with the financial management of the Whānau Integration, Innovation and Engagement Fund, administered by Te Puni Kōkiri? Hon DAVID PARKER to the Minister of Finance: What is the projected growth, if any, of New Zealand’s international liabilities under this Government’s policies, and what are the components of those liabilities? EUGENIE SAGE to the Minister for the Environment: Is water quality in New Zealand being negatively affected by livestock in rivers and lakes? Dr CAM CALDER to the Minister of Corrections: What progress has been made on the proposal to build a public-private prison at Wiri? Hon PHIL GOFF to the Minister of Foreign Affairs: Will proposed changes to the Ministry of Foreign Affairs and Trade undermine its ability to carry out its role in promoting New Zealand’s trade, security and consular interests? LOUISE UPSTON to the Minister of Women's Affairs: What commitment is the Government willing to make to increase the number of women on State sector boards? DENIS O'ROURKE to the Minister for Canterbury Earthquake Recovery: Is he satisfied with the rate of progress of the Christchurch earthquake recovery? Dr KENNEDY GRAHAM to the Minister for Climate Change Issues: Did New Zealand meet the 28 February deadline for its submission to the United Nations on increasing the level of ambition in global greenhouse gas mitigation, as agreed by parties in the Durban Platform for Enhanced Action; if not, why not? DARIEN FENTON to the Minister of Labour: Does she stand by her answer to Written Question No 00916 (2012) that “the Government is focused on building a more competitive economy, which will lead to more jobs and higher wages”? JOHN HAYES to the Minister of Defence: What updates can he give on new Defence Force capability? CLARE CURRAN to the Minister of Broadcasting: Is he confident that current Government broadcasting policy upholds the standards of an independent and free press; if so, why?  

Research papers, University of Canterbury Library

Five years on from the 2010-2011 Canterbury earthquakes, research has shown an increase in hyperarousal symptoms in school children. While Cognitive Behaviour Therapy is currently the gold standard for treating Post-Traumatic Stress, there are insufficient clinicians to treat the high numbers of children in post-disaster communities. Alternative non-verbal interventions in school based settings that target the physiological basis of hyperarousal may be more effective for long term stress reduction in some young children. Neuroscience research suggests that drawing activates brain areas connected with the autonomic nervous system, resulting in relaxation and self-regulation. The aim of the current study was to determine whether a 20-minute drawing lesson during the afternoon of the school day would reduce stress in children with hyperarousal symptoms. The study had a single subject ABA design. Four children participated, two of the children exhibited hyperarousal symptoms, and the other two did not, as determined by teacher and parent responses on the Behaviour Problem Index (BPI). The children’s selfreported stress (measured by the Subjective Unit of Distress (SUD) thermometer) and physiological stress (measured by finger temperature) were recorded at the start and end of each session during baseline, drawing lessons, and return to baseline phases. The results of the study showed a general reduction in physiological stress during the drawing lessons for the children with hyperarousal symptoms. However, the results indicated some discrepancies between the children’s physiological stress and perception of stress, which may suggest that the self-report measure was inappropriate for the children in this study. Overall, the study suggests that drawing lessons show promise as a school-based intervention for reducing stress in children with hyperarousal. More research is required to address the limitations of the present study, and before the study can be applied to the whole classroom as a positive strategy for managing stress at school.

Audio, Radio New Zealand

1. Dr RUSSEL NORMAN to the Minister of Trade: Does he still consider that the United States will benefit from being part of the Trans-Pacific Partnership; if so, how? 2. Hon PHIL GOFF to the Prime Minister: Does he believe that all persons who have served as Ministers in his Government have met the requirement of the Cabinet Manual to behave in a way that upholds, and is seen to uphold, the highest ethical standards in their ministerial capacity, their political capacity and their personal capacity; if so, why? 3. CRAIG FOSS to the Minister of Finance: What reports has he received on the Government's financial position? 4. Hon ANNETTE KING to the Minister of Tourism: How many full-time permanent jobs has his cycleway project created? 5. JONATHAN YOUNG to the Minister for Communications and Information Technology: What progress has been made on the Ultra-fast broadband initiative? 6. Hon TREVOR MALLARD to the Minister of Education: Which ministers, if any, did she personally consult with on the question of removing the requirement for police checks for employees of limited attendance early childhood centres before she introduced the Education Amendment Bill (No 2)? 7. AARON GILMORE to the Minister of Revenue: What examples can he give of families claiming social assistance for which they are not entitled and what has this Government done to stop this abuse? 8. Hon DAVID CUNLIFFE to the Minister of Finance: How much lower will the growth forecast be for the year to March 2011 in the Half Year Economic and Fiscal Update compared with the Budget 2010 forecast? 9. SHANE ARDERN to the Minister of Agriculture: What recent actions has the Government taken to improve the welfare of pigs in New Zealand? 10. Hon RUTH DYSON to the Minister of Health: Will he act to prevent closure of health services in Taihape? 11. AMY ADAMS to the Minister for Land Information: What steps has Land Information New Zealand taken to help in the rebuilding of Canterbury following the 4 September earthquake? 12. Hon DARREN HUGHES to the Minister of Transport: Which project has the higher benefit cost ratio: the Auckland CBD rail loop or the Puhoi to Wellsford Road of National Significance?

Audio, Radio New Zealand

DAVID BENNETT to the Minister of Finance: How is the Government's economic programme supporting stronger regional job growth? Hon SHANE JONES to the Minister of Commerce: Is he aware of demands being made by the Countdown supermarket group for retrospective payments from New Zealand suppliers, with threats Countdown will not stock their products? JULIE ANNE GENTER to the Minister for Economic Development: Why is the Government holding up economic development in Auckland's CBD, according to Auckland City officials, by delaying the opening of the City Rail Link until 2025? ALFRED NGARO to the Minister for Social Development: What reports has she received about the state of the nation in relation to social outcomes? DENIS O'ROURKE to the Minister for Canterbury Earthquake Recovery: Is he aware of any proposals to transport asbestos-contaminated material from the Christchurch rebuild to sub-standard landfills? Hon ANNETTE KING to the Minister of Health: Is he satisfied New Zealanders are receiving timely and affordable healthcare? MARK MITCHELL to the Minister of Housing: What reports has he received on positive progress being advanced on the Government's housing agenda? DARIEN FENTON to the Minister of Labour: Does he agree with the Prime Minister's statement on the minimum wage that "I think we've been pretty fair in what we've done in the past and we probably will be in the future"? CLAUDETTE HAUITI to the Minister of Science and Innovation: How are the National Science Challenges bringing together the best scientific talent across New Zealand? HONE HARAWIRA to the Minister for Economic Development: Will he commit to spending the $41m on reducing child poverty, after signalling that he might not now give that money to Team New Zealand to compete in the next America's Cup? Dr RAJEN PRASAD to the Minister of Immigration: When he said in response to an oral question on 29 January 2014 that it was "a pretty simple process…to alert immigration authorities", what was his understanding of the process a complainant would go through? CHRIS AUCHINVOLE to the Associate Minister of Transport: What progress is being made in improving road safety?

Audio, Radio New Zealand

Hon DAVID PARKER to the Minister of Finance: Does he accept the BNZ statement that New Zealand’s increasing current account is “a very clear risk for New Zealand’s credit rating with Standard and Poor’s”? SHANE ARDERN to the Minister of Finance: What reports has he received on the economy? KEVIN HAGUE to the Minister for ACC: Can she confirm that staff in ACC’s Recovery Independence Service teams receive more or less remuneration dependent on whether the proportion of people receiving weekly compensation is less or more than specified duration targets? Hon DAVID CUNLIFFE to the Minister for Economic Development: Does he stand by all his recent statements? JAMI-LEE ROSS to the Minister of Police: What actions has the Government taken against illegal street racers? Hon MARYAN STREET to the Minister of Health: Has he received any reports or correspondence regarding the Community Pharmacy Services Agreement with District Health Boards and if he has, have they caused him any concern? TIM MACINDOE to the Minister of Justice: How is the Justice sector contributing to the Government’s better public services programme? GARETH HUGHES to the Minister for Climate Change Issues: Does he agree with the statement made by the Minister for the Environment, Hon Amy Adams in Rio, that, “Money spent on fossil fuels is money that could be spent on other sustainable development priorities”, and will the Government re-allocate the $889 million for ETS credits in Budget 2012 towards sustainable projects and a green economy? MIKE SABIN to the Minister of Immigration: What reports has he received on the benefits to New Zealand of the Recognised Seasonal Employer scheme? KRIS FAAFOI to the Minister of Police: Does she stand by all the statements she made to the Law and Order Committee yesterday? NICKY WAGNER to the Minister for Courts: What recent announcements has he made regarding court services for Christchurch? DENIS O'ROURKE to the Minister for Canterbury Earthquake Recovery: Does he still believe that the best way to deal with the price increase in home rentals in Christchurch is to leave it to the market?

Audio, Radio New Zealand

DAVID SHEARER to the Prime Minister: Does he stand by all his statements? TODD McCLAY to the Minister of Finance: What progress is the Government making in its share offer programme to reduce debt and free up capital for priority spending? Rt Hon WINSTON PETERS to the Prime Minister: Does he believe that he has met the requirements of the Cabinet Manual to behave in a way that upholds, and is seen to uphold, the highest ethical standards in his ministerial capacity, his political capacity and his personal capacity; if so, why? Hon PHIL HEATLEY to the Minister for Social Development: What reports has she received on the latest benefit figures? Hon DAVID PARKER to the Minister of Finance: Will the recent rise in the New Zealand dollar to a post-float high on the Trade Weighted Index cause job losses among non-primary exporters and import substitution businesses? JULIE ANNE GENTER to the Minister of Finance: Does he have a plan to fund the Auckland City rail link in the upcoming Budget given that public backing for the rail project is more than twice as strong as the Government's proposed new motorway north from Puhoi? Dr JIAN YANG to the Minister for Economic Development: How is the Government recognising the importance of China for New Zealand's trade, education and tourism sectors? Hon CLAYTON COSGROVE to the Minister for State Owned Enterprises: What responsibility, if any, does he take for Solid Energy's precarious financial position? NICKY WAGNER to the Minister of Housing: How will the $320 million settlement of Housing New Zealand's insurance claim for earthquake damaged properties help achieve the Government's priority of rebuilding Christchurch? GRANT ROBERTSON to the Prime Minister: What role, if any, did he play in recommending the appointment of Ian Fletcher as Director of the Government Communications Security Bureau? MIKE SABIN to the Associate Minister of Social Development: What early results can he report from the Government's efforts to deal with welfare fraud? GARETH HUGHES to the Minister of Energy and Resources: Will he recommend returning the Crown Minerals Amendment Bill to the select committee so that the public can have a say on the so-called "Anadarko Amendment"; if not, why not?

Audio, Radio New Zealand

GRANT ROBERTSON to the Minister for Tertiary Education, Skills and Employment: Does he stand by his statement that the Household Labour Force Survey is "the standard internationally recognised measure of employment and unemployment"? PAUL GOLDSMITH to the Minister of Finance: What recent reports has he received on the economy? Dr KENNEDY GRAHAM to the Minister for Climate Change Issues: Does he stand by the answer given by the Minister of Finance to the question "Does he accept that human-induced climate change is real?" that "It may well be…"? Hon DAVID PARKER to the Minister of Finance: Given that unemployment is rising, exports are down, and house price inflation in Auckland and Canterbury is in double-digits, does he agree that after 5 years as Finance Minister he has failed to rebalance and diversify the economy; if not, why not? JOHN HAYES to the Minister of Trade: What efforts is the Government making to deal with the market effects of the possible contamination of some Fonterra diary exports? Hon SHANE JONES to the Minister for Economic Development: What action has he taken to ensure high value jobs are retained in Otago, Waikato, Northland, East Coast and Manawatu? KEVIN HAGUE to the Minister of Health: Exactly how many of the 21 recommendations to the Minister in the 2010 Public Health Advisory Committee Report The Best Start in Life: Achieving effective action on child health and wellbeing has he implemented? JACQUI DEAN to the Minister for Food Safety: What update can she provide the public on the safety of infant formula? Hon DAMIEN O'CONNOR to the Minister for Primary Industries: Does he stand by all his statements? NICKY WAGNER to the Minister for Building and Construction: What reports has he received following the Government's announcement of a new earthquake-prone building policy? RICHARD PROSSER to the Minister for Primary Industries: What reports, if any, has he received regarding the regeneration of fish stocks in the Snapper 1 fishery? Dr DAVID CLARK to the Minister for Economic Development: Does he agree with Dunedin Mayor Dave Cull that "Central government needs to understand we can't have a … two-speed economy where Christchurch and Auckland are ripping ahead and the rest of the regions are withering"; if not, why not?

Audio, Radio New Zealand

Questions to Ministers 1. JONATHAN YOUNG to the Minister of Finance: What advice has he received about factors that lie behind the current turmoil we are witnessing on world financial markets, and what are the implications for New Zealand? 2. KEVIN HAGUE to the Minister of Labour: Does she still agree, as she did on 13 July 2011, with the comment made by Rt Hon John Key on 22 November 2010 that "I have no reason to believe that New Zealand safety standards are any less than Australia's and in fact our safety record for the most part has been very good"? 3. Hon ANNETTE KING to the Prime Minister: Does he stand by his answers to Oral Question No 1 yesterday when he said that the Leader of the Opposition is "just plain wrong" in relation to skills training? 4. KATRINA SHANKS to the Minister for the Environment: How have Government reforms to the Resource Management Act helped increase competition in the grocery business? 5. Hon CLAYTON COSGROVE to the Attorney-General: Will he meet with earthquake victims' families to hear directly why they need independent legal representation; if not, why not? 6. Hon JOHN BOSCAWEN to the Minister of Finance: Does he stand by his statement that "I think the New Zealand Institute of Economic Research is referring to some longer-term issues around demographic change and healthcare costs, and we share the chief executive's concern"? 7. DARIEN FENTON to the Minister of Labour: What is the timeline of the ministerial inquiry into the treatment of foreign fishing crews in New Zealand waters? 8. CHRIS AUCHINVOLE to the Minister for Communications and Information Technology: What progress is being made on the Government's goal of delivering fast broadband to rural areas? 9. Dr KENNEDY GRAHAM to the Minister for Canterbury Earthquake Recovery: Does he agree that an appropriate part of the "red zone" area along the Avon River through Christchurch should be transformed into a "green space" for memorial and recreational public purposes? 10. STUART NASH to the Minister of Finance: Does he believe the tax system is fair for all New Zealanders? 11. KANWALJIT SINGH BAKSHI to the Minister for Social Development and Employment: What steps has the Government taken to manage gateways between benefits? 12. KELVIN DAVIS to the Minister of Education: Does she stand by all of her answers to Oral Question No 8 yesterday?

Audio, Radio New Zealand

DAVID SHEARER to the Prime Minister: Does he believe that Hon John Banks has behaved in a manner that “upholds, and is seen to uphold the highest ethical standards” as required by the Cabinet Manual? BARBARA STEWART to the Prime Minister: Did Mr Banks explain to the Prime Minister’s Chief of Staff that he would use “obfuscation” in his dealings with the media over the “anonymous” donations from Kim Dotcom? MAGGIE BARRY to the Minister of Finance: How does the Government intend to strengthen the Public Finance Act 1989 in the Budget this month? Hon DAVID PARKER to the Minister of Finance: In the most recent World Economic Outlook published by the IMF in April 2012, which of the 34 advanced economies listed is forecast to have a worse current account deficit (as a percentage of GDP) than New Zealand in 2013? METIRIA TUREI to the Prime Minister: Does he stand by all the answers he gave to Oral Question No 4 yesterday? KANWALJIT SINGH BAKSHI to the Minister for Economic Development: What action is the Government taking to improve co-ordination of the business growth agenda? Hon PHIL GOFF to the Minister of Foreign Affairs: What damage, if any, has been done to staff confidence and retention by the change proposals for his Ministry announced on 23 February 2012, and does he intend to announce on 10 May 2012 a reversal of many of the proposals? SIMON O'CONNOR to the Minister of Labour: What steps is the Government taking to improve workplace health and safety? GARETH HUGHES to the Minister of Conservation: Does her proposed extension of the Marine Mammal Sanctuary for Maui’s dolphins allow the use of set nets, drift nets, and trawl nets within the sanctuary? IAN McKELVIE to the Minister of Corrections: What reports has she received about trade training within prisons? Hon LIANNE DALZIEL to the Minister for Canterbury Earthquake Recovery: Has he required that all his Ministers involved in the Canterbury earthquake recovery read the briefing paper dated 10 May 2011 prepared by Chief Science Advisor, Professor Sir Peter Gluckman, into the psychosocial consequences of the Canterbury earthquakes; if not, why not? NIKKI KAYE to the Minister of Education: What evidence has she seen of excellent achievement in scholarship exams?  

Research papers, University of Canterbury Library

The recent earthquakes in Christchurch have made it clear that issues exist with current RC frame design in New Zealand. In particular, beam elongation in RC frame buildings was widespread and resulted in numerous buildings being rendered irreparable. Design solutions to overcome this problem are clearly needed, and the slotted beam is one such solution. This system has a distinct advantage over other damage avoidance design systems in that it can be constructed using current industry techniques and conventional reinforcing steel. As the name suggests, the slotted beam incorporates a vertical slot along part of the beam depth at the beam-column interface. Geometric beam elongation is accommodated via opening and closing of these slots during seismically induced rotations, while the top concrete hinge is heavily reinforced to prevent material inelastic elongation. Past research on slotted beams has shown that the bond demand on the bottom longitudinal reinforcement is increased compared with equivalent monolithic systems. Satisfying this increased bond demand through conventional means may yield impractical and economically less viable column dimensions. The same research also indicated that the joint shear mechanism was different to that observed within monolithic joints and that additional horizontal reinforcement was required as a result. Through a combination of theoretical investigation, forensic analysis, and database study, this research addresses the above issues and develops design guidelines. The use of supplementary vertical joint stirrups was investigated as a means of improving bond performance without the need for non-standard reinforcing steel or other hardware. These design guidelines were then validated experimentally with the testing of two 80% scale beam-column sub-assemblies. The revised provisions for bond within the bottom longitudinal reinforcement were found to be adequate while the top longitudinal reinforcement remained nominally elastic throughout both tests. An alternate mechanism was found to govern joint shear behaviour, removing the need for additional horizontal joint reinforcement. Current NZS3101:2006 joint shear reinforcement provisions were found to be more than adequate given the typically larger column depths required rendering the strut mechanism more effective. The test results were then used to further refine design recommendations for practicing engineers. Finally, conclusions and future research requirements were outlined.

Audio, Radio New Zealand

Questions to Ministers 1. Dr RUSSEL NORMAN to the Minister of Justice: Is it his view that the justice system should provide rehabilitation and give people the chance to change? 2. Hon ANNETTE KING to the Minister for Canterbury Earthquake Recovery: Is he satisfied with progress on the recovery from the Canterbury earthquake so far? 3. DAVID BENNETT to the Minister of Broadcasting: What recent announcements have been made regarding digital switchover? 4. SUE MORONEY to the Minister of Education: What policy initiatives has she developed for early childhood education? 5. AARON GILMORE to the Minister of Civil Defence: What is the update on the Canterbury Civil Defence states of emergency? 6. Hon DAVID CUNLIFFE to the Minister of Finance: Did the Treasury evaluate the net effect on South Canterbury Finance's position of the February 2010 acquisition of Helicopters (NZ) Ltd and Scales Corporation shares, including the effect of the transaction on the recoverability or impairment of South Canterbury Finance's $75 million loan to its parent company, Southbury Group Ltd? 7. LOUISE UPSTON to the Minister of Energy and Resources: Will Cantabrians whose chimneys have been significantly damaged by the recent earthquake be covered by the Earthquake Commission to replace their old log burners or open fires with new efficient heaters? 8. Hon TREVOR MALLARD to the Minister of Education: What support will be available in 2011 to schools that have very poor numeracy national standards results in 2010? 9. SANDRA GOUDIE to the Minister of Corrections: What support is the Corrections Department offering to Canterbury community groups and individuals to help with earthquake recovery? 10. DARIEN FENTON to the Minister of Labour: Does she stand by her statement to the House on 14 September 2010 that the 90-day trial provisions "do not take away rights"? 11. CHESTER BORROWS to the Minister of Housing: What is the Government doing to assist people whose homes are not habitable following the Canterbury earthquake? 12. PHIL TWYFORD to the Minister of Local Government: When he said in the House yesterday that the Auckland Transition Agency "ran a tender to deliver an enterprise resource planning system" was he referring to merely the $14.3 million contract for the implementation of the Enterprise Resource Planning system or was he referring to the full contract of $53.8 million to deliver the Enterprise Resource Planning system? Questions to Members 1. DARIEN FENTON to the Chairperson of the Transport and Industrial Relations Committee: How many submissions have been received on the Employment Relations Amendment Bill (No 2)?

Audio, Radio New Zealand

1. TODD McCLAY to the Minister of Finance: What reports has he received on the economy? 2. KEVIN HAGUE to the Minister of Labour: Does she agree that the test of practicability in the Health and Safety in Employment (Mining-Underground) Regulations 1999 is likely to result in different mines having different safety standards, in contrast to the regulations in place until 1992? 3. Hon ANNETTE KING to the Prime Minister: In light of his comment that "New Zealand is to be congratulated because, at least in terms of the gender pay gap, ours is the third lowest in the OECD", does that mean he is satisfied with the 10.6 percent gap between men's and women's pay in our country? 4. LOUISE UPSTON to the Minister for Social Development and Employment: What reports has she received on the latest benefit numbers? 5. Hon CLAYTON COSGROVE to the Minister for Canterbury Earthquake Recovery: Does he consider the allocation of the value of the land within the rating valuation process to be robust, when it has produced such variable outcomes, leaving many in the red zone with insufficient funds to buy a section to take advantage of the replacement option in their insurance policy? 6. Dr CAM CALDER to the Minister for the Environment: What work is his Ministry doing to help New Zealand take up the opportunity from green growth following the OECD May 2011 report on the high expected global demand for such products and services? 7. Hon MARYAN STREET to the Minister of Foreign Affairs: How many human resources contracts, if any, were let by the Ministry of Foreign Affairs and Trade without tenders being invited in 2010/2011, and what criteria were used to assess non-tendered contractors? 8. PAUL QUINN to the Minister of Transport: What is the Government doing to improve Wellington's commuter rail network? 9. METIRIA TUREI to the Prime Minister: Does he stand by his statement "there is no question in my mind - someone would be better off in paid employment than on welfare. If they were not, that is a real indictment on the welfare system"? 10. Hon TREVOR MALLARD to the Minister of Finance: When he said that "I did visit the Chinese Investment Corporation … They are very pleased with New Zealand's economic policy", was one of the policies he discussed with this foreign sovereign wealth fund his plan for privatising state assets? 11. JAMI-LEE ROSS to the Minister of Broadcasting: What recent announcements has the Government made on progress towards digital switchover? 12. GRANT ROBERTSON to the Minister of Health: Does he stand by his statement to the Cabinet Expenditure Control Committee that "we may need to take some tough choices regarding the scope and range of services the public health system can provide to New Zealanders"?

Research papers, University of Canterbury Library

Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.

Research papers, University of Canterbury Library

Supplemental energy dissipation devices are increasingly used to protect structures, limit loads transferred to structural elements and absorbing significant response energy without sacrificial structural damage. Lead extrusion dampers are supplemental energy dissipation devices, where recent development of smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, has seen deployment in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch, NZ and San Francisco, USA. HF2V devices have previously been designed using limited precision models, so there is variation in force prediction capability. Further, while the overall resistive force is predicted, the knowledge of the relative contributions of the different internal reaction mechanisms to these overall resistive forces is lacking, limiting insight and predictive accuracy in device design. There is thus a major need for detailed design models to better understand force generation, and to aid precision device design. These outcomes would speed the overall design and implementation process for uptake and use, reducing the need for iterative experimental testing. Design parameters from 17 experimental HF2V device tests are used to create finite element models using ABAQUS. The analysis is run using ABAQUS Explicit, in multiple step times of 1 second with automatic increments, to balance higher accuracy and computational time. The output is obtained from the time- history output of the contact pressure forces including the normal and friction forces on the lead along the shaft. These values are used to calculate the resistive force on the shaft as it moves through the lead, and thus the device force. Results of these highly nonlinear, high strain analyses are compared to experimental device force results. Model errors compared to experimental results for all 17 devices ranged from 0% to 20% with a mean absolute error of 6.4%, indicating most errors were small. In particular, the standard error in manufacturing is SE = ±14%. In this case, 15 of 17 devices (88%) are within ±1SE (±14%) and 2 of 17 devices (12%) are within ±2SE (±28). These results show low errors and a distribution of errors compared to experimental results that are within experimental device construction variability. The overall modelling methodology is objective and repeatable, and thus generalizable. The exact same modelling approach is applied to all devices with only the device geometry changing. The results validate the overall approach with relatively low error, providing a general modelling methodology for accurate design of HF2V devices.

Audio, Radio New Zealand

METIRIA TUREI to the Minister for the Environment: Ki Te Minita mō Te Taiao: Ka tukua e ngā paerewa e whakaarohia akehia nei mō te pai ake o te wai i roto i te pūhera Wai Mā, te kaha kē atu, te iti kē iho rānei o te uru atu o te tūkinotanga ki roto i ō tātou awa wai, e ngā mea whakakapi? Translation: Do the proposed standards for water quality in the Clean Water package allow more pollution or less to enter our waterways than the ones they will replace? BRETT HUDSON to the Minister of Finance: How much is the Government committing to spend on infrastructure over the next 4 years? ANDREW LITTLE to the Prime Minister: Given his predecessor told the Pike River families, “I’m here to give you absolute reassurance we’re committed to getting the boys out, and nothing’s going to change that”, when, if ever, will he be announcing the re-entry of the drift? STUART SMITH to the Minister of Transport: What announcements has he made recently regarding the Government’s commitment to reinstate key transport links following the Kaikōura earthquake? JACINDA ARDERN to the Minister for Children: When was she first notified that the Ministry for Vulnerable Children Oranga Tamariki, or its predecessor CYF, were placing children and younger persons in a hotel or motel for short-term care without a supervisor, and what was her first action, if any? MELISSA LEE to the Minister of Health: Can he confirm that 55,000 care and support workers will share in the $2 billion pay equity settlement announced on 18 April 2017? GRANT ROBERTSON to the Minister of Finance: Does he agree with the Dominion Post editorial that his Government has “singularly failed to answer the pressures of Auckland”; if not, why does he think they would write this? ANDREW BAYLY to the Minister for Building and Construction: How do the latest reports on the level of building activity in Auckland and nationwide for the month, quarter, and year compare with 2016? Rt Hon WINSTON PETERS to the Prime Minister: Does he stand by all his statements; if so, how? PHIL TWYFORD to the Minister of Transport: Why has the completion of the $2.4 billion Western Ring Route been delayed, and when can Aucklanders expect the new motorway to be open? EUGENIE SAGE to the Minister of Conservation: Is it Government policy to increase the logging of native forests on West Coast conservation land? Dr MEGAN WOODS to the Minister supporting Greater Christchurch Regeneration: Does she agree that the first homes in the East Frame will be completed 5 months ahead of schedule? Questions to Members CLARE CURRAN to the Chairperson of the Commerce Committee: Does she intend to call for further submissions on the petition of Dame Fiona Kidman before it is reported back to the House, in light of the recently released footage shot inside the drift of the Pike River mine?

Research papers, University of Canterbury Library

Several concrete cladding panels were damaged during the 2011 Christchurch Earthquakes in New Zealand. Damage included partial collapse of panels, rupture of joint sealants, cracking and corner crushing. Installation errors, faulty connections and inadequate detailing were also contributing factors to the damage. In New Zealand, two main issues are considered in order to accommodate story drifts in the design of precast cladding panels: 1) drift compatibility of tieback or push-pull connections and 2) drift compatibility of corner joints. Tieback connections restrain the panels in the out-of-plane direction while allowing in-plane translation with respect to the building frame. Tieback connections are either in the form of slots or oversized holes or ductile rods usually located at the top of the panels. Bearing connections are also provided at the bottom of panels to transfer gravity loads. At the corners of a building, a vertical joint gap, usually filled with sealants, is provided between the two panels on the two orthogonal sides to accommodate the relative movement. In cases where the joint gap is not sufficient to accommodate the relative movements, panels can collide, generating large forces and the likely failure of the connections. On the other hand, large gaps are aesthetically unpleasing. The current design standards appear to recognize these issues but then leave most of the design and detailing to the discretion of the designers. In the installation phase, the alignment of panels is one of the main challenges faced by installers (and/or contractors). Many prefer temporary props to guide, adjust and hold the panels in place whilst the bearing connections are welded. Moreover, heat generated from extensive welding can twist the steel components inducing undesirable local stresses in the panels. Therefore, the installation phase itself is time-consuming, costly and prone to errors. This paper investigates the performance of a novel panel system that is designed to accommodate lateral inter-story drift through a ‘rocking’ motion. In order to gauge the feasibility of the system, six 2m high precast concrete panels within a single-story steel frame structure have been tested under increasing levels of lateral cyclic drift at the University of Canterbury, New Zealand. Three different panel configurations are tested: 1) a panel with return cover and a flat panel at a corner under unidirectional loading, 2) Two adjacent flat panels under unidirectional loading, and 3) Two flat panels at another oblique corner under bidirectional loading. A vertical seismic joint of 25 mm, filled with one-stage joint sealant, is provided between two of the panels. The test results show the ability of the panels with ‘rocking’ connection details to accommodate larger lateral drifts whilst allowing for smaller vertical joints between panels at corners, quick alignment and easy placement of panels without involving extensive welding on site.

Research papers, University of Canterbury Library

A buckling-restrained braced frame (BRBF) is a structural bracing system that provides lateral strength and stiffness to buildings and bridges. They were first developed in Japan in the 1970s (Watanabe et al. 1973, Kimura et al. 1976) and gained rapid acceptance in the United States after the Northridge earthquake in 1994 (Bruneau et al. 2011). However, it was not until the Canterbury earthquakes of 2010/2011, that the New Zealand construction market saw a significant uptake in the use of buckling-restrained braces (BRBs) in commercial buildings (MacRae et al. 2015). In New Zealand there is not yet any documented guidance or specific instructions in regulatory standards for the design of BRBFs. This makes it difficult for engineers to anticipate all the possible stability and strength issues within a BRBF system and actively mitigate them in each design. To help ensure BRBF designs perform as intended, a peer review with physical testing are needed to gain building compliance in New Zealand. Physical testing should check the manufacturing and design of each BRB (prequalification testing), and the global strength and stability of each BRB its frame (subassemblage testing). However, the financial pressures inherent in commercial projects has led to prequalification testing (BRB only testing) being favoured without adequate design specific subassemblage testing. This means peer reviewers have to rely on BRB suppliers for assurances. This low regulation environment allows for a variety of BRBF designs to be constructed without being tested or well understood. The concern is that there may be designs that pose risk and that issues are being overlooked in design and review. To improve the safety and design of BRBFs in New Zealand, this dissertation studies the behaviour of BRBs and how they interact with other frame components. Presented is the experimental test process and results of five commercially available BRB designs (Chapter 2). It discusses the manufacturing process, testing conditions and limitations of observable information. It also emphasises that even though subassemblage testing is impractical, uniaxial testing of the BRB only is not enough, as this does not check global strength or stability. As an alternative to physical testing, this research uses computer simulation to model BRB behaviour. To overcome the traditional challenges of detailed BRB modelling, a strategy to simulate the performance of generic BRB designs was developed (Chapter 3). The development of nonlinear material and contact models are important aspects of this strategy. The Chaboche method is employed using a minimum of six backstress curves to characterize the combined isotropic and kinematic hardening exhibited by the steel core. A simplified approach, adequate for modelling the contact interaction between the restrainer and the core was found. Models also capture important frictional dissipation as well as lateral motion and bending associated with high order constrained buckling of the core. The experimental data from Chapter 2 was used to validate this strategy. As BRBs resist high compressive loading, global stability of the BRB and gusseted connection zone need to be considered. A separate study was conducted that investigated the yielding and buckling strength of gusset plates (Chapter 4). The stress distribution through a gusset plate is complex and difficult to predict because the cross-sectional area of gusset plate is not uniform, and each gusset plate design is unique in shape and size. This has motivated design methods that approximate yielding of gusset plates. Finite element modelling was used to study the development of yielding, buckling and plastic collapse behaviour of a brace end bolted to a series of corner gusset plates. In total 184 variations of gusset plate geometries were modelled in Abaqus®. The FEA modelling applied monotonic uniaxial load with an imperfection. Upon comparing results to current gusset plate design methods, it was found that the Whitmore width method for calculating the yield load of a gusset is generally un-conservative. To improve accuracy and safety in the design of gusset plates, modifications to current design methods for calculating the yield area and compressive strength for gusset plates is proposed. Bolted connections are a popular and common connection type used in BRBF design. Global out-of-plane stability tends to govern the design for this connection type with numerous studies highlighting the risk of instability initiated by inelasticity in the gussets, neck of the BRB end and/or restrainer ends. Subassemblage testing is the traditional method for evaluating global stability. However, physical testing of every BRBF variation is cost prohibitive. As such, Japan has developed an analytical approach to evaluate out-of-plane stability of BRBFs and incorporated this in their design codes. This analytical approach evaluates the different BRB components under possible collapse mechanisms by focusing on moment transfer between the restrainer and end of the BRB. The approach have led to strict criteria for BRBF design in Japan. Structural building design codes in New Zealand, Europe and the United States do not yet provide analytical methods to assess BRB and connection stability, with prototype/subassemblage testing still required as the primary means of accreditation. Therefore it is of interest to investigate the capability of this method to evaluate stability of BRBs designs and gusset plate designs used in New Zealand (including unstiffened gusset connection zones). Chapter 5 demonstrates the capability of FEA to study to the performance of a subassemblage test under cyclic loading – resembling that of a diagonal ground storey BRBF with bolted connections. A series of detailed models were developed using the strategy presented in Chapter 3. The geometric features of BRB 6.5a (Chapter 2) were used as a basis for the BRBs modelled. To capture the different failure mechanisms identified in Takeuchi et al. (2017), models varied the length that the cruciform (non-yielding) section inserts into the restrainer. Results indicate that gusset plates designed according to New Zealand’s Steel Structures Standard (NZS 3404) limit BRBF performance. Increasing the thickness of the gusset plates according to modifications discussed in Chapter 4, improved the overall performance for all variants (except when Lin/ Bcruc = 0.5). The effect of bi-directional loading was not found to notably affect out-of-plane stability. Results were compared against predictions made by the analytical method used in Japan (Takeuchi method). This method was found to be generally conservative is predicting out-of-plane stability of each BRBF model. Recommendations to improve the accuracy of Takeuchi’s method are also provided. The outcomes from this thesis should be helpful for BRB manufacturers, researchers, and in the development of further design guidance of BRBFs.

Research papers, University of Canterbury Library

Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.

Research papers, University of Canterbury Library

This report presents the simplified seismic assessment of a case study reinforced concrete (RC) building following the newly developed and refined NZSEE/MBIE guidelines on seismic assessment (NZSEE/MBIE, semi-final draft 26 October 2016). After an overview of the step-by-step ‘diagnostic’ process, including an holistic and qualitative description of the expected vulnerabilities and of the assessment strategy/methodology, focus is given, whilst not limited, to the implementation of a Detailed Seismic Assessment (DSA) (NZSEE/MBIE, 2016c). The DSA is intended to provide a more reliable and consistent outcome than what can be provided by an initial seismic assessment (ISA). In fact, while the Initial Seismic Assessment (ISA), of which the Initial Evaluation Procedure is only a part of, is the more natural and still recommended first step in the overall assessment process, it is mostly intended to be a coarse evaluation involving as few resources as reasonably possible. It is thus expected that an ISA will be followed by a Detailed Seismic Assessment (DSA) not only where the threshold of 33%NBS is not achieved but also where important decisions are intended that are reliant on the seismic status of the building. The use of %NBS (% New Building Standard) as a capacity/demand ratio to describe the result of the seismic assessment at all levels of assessment procedure (ISA through to DSA) is deliberate by the NZSEE/MBIE guidelines (Part A) (NZSEE/MBIE 2016a). The rating for the building needs only be based on the lowest level of assessment that is warranted for the particular circumstances. Discussion on how the %NBS rating is to be determined can be found in Section A3.3 (NZSEE/MBIE 2016a), and, more specifically, in Part B for the ISA (NZSEE/MBIE 2016b) and Part C for the DSA (NZSEE/MBIE 2016c). As per other international approaches, the DSA can be based on several analysis procedures to assess the structural behaviour (linear, nonlinear, static or dynamic, force or displacement-based). The significantly revamped NZSEE 2016 Seismic Assessment Guidelines strongly recommend the use of an analytical (basically ‘by hand’) method, referred to the Simple Lateral Mechanism Analysis (SLaMA) as a first phase of any other numerically-based analysis method. Significant effort has thus been dedicated to provide within the NZSEE 2016 guidelines (NZSEE/MBIE 2016c) a step-by-step description of the procedure, either in general terms (Chapter 2) or with specific reference to Reinforced Concrete Buildings (Chapter 5). More specifically, extract from the guidelines, NZSEE “recommend using the Simple Lateral Mechanism Analysis (SLaMA) procedure as a first step in any assessment. While SLaMA is essentially an analysis technique, it enables assessors to investigate (and present in a simple form) the potential contribution and interaction of a number of structural elements and their likely effect on the building’s global capacity. In some cases, the results of a SLaMA will only be indicative. However, it is expected that its use should help assessors achieve a more reliable outcome than if they only carried out a detailed analysis, especially if that analysis is limited to the elastic range For complex structural systems, a 3D dynamic analysis may be necessary to supplement the simplified nonlinear Simple Lateral Mechanism Analysis (SLaMA).” This report presents the development of a full design example for the the implementation of the SLaMA method on a case study buildings and a validation/comparison with a non-linear static (pushover) analysis. The step-by-step-procedure, summarized in Figure 1, will be herein demonstrated from a component level (beams, columns, wall elements) to a subassembly level (hierarchy of strength in a beam-column joint) and to a system level (frame, C-Wall) assuming initially a 2D behaviour of the key structural system, and then incorporating a by-hand 3D behaviour (torsional effects).

Research papers, University of Canterbury Library

The recent Canterbury earthquake sequence in 2010-2011 highlighted a uniquely severe level of structural damage to modern buildings, while confirming the high vulnerability and life threatening of unreinforced masonry and inadequately detailed reinforced concrete buildings. Although the level of damage of most buildings met the expected life-safety and collapse prevention criteria, the structural damage to those building was beyond economic repair. The difficulty in the post-event assessment of a concrete or steel structure and the uneconomical repairing costs are the big drivers of the adoption of low damage design. Among several low-damage technologies, post-tensioned rocking systems were developed in the 1990s with applications to precast concrete members and later extended to structural steel members. More recently the technology was extended to timber buildings (Pres-Lam system). This doctoral dissertation focuses on the experimental investigation and analytical and numerical prediction of the lateral load response of dissipative post-tensioned rocking timber wall systems. The first experimental stages of this research consisted of component testing on both external replaceable devices and internal bars. The component testing was aimed to further investigate the response of these devices and to provide significant design parameters. Post-tensioned wall subassembly testing was then carried out. Firstly, quasi-static cyclic testing of two-thirds scale post-tensioned single wall specimens with several reinforcement layouts was carried out. Then, an alternative wall configuration to limit displacement incompatibilities in the diaphragm was developed and tested. The system consisted of a Column-Wall-Column configuration, where the boundary columns can provide the support to the diaphragm with minimal uplifting and also provide dissipation through the coupling to the post-tensioned wall panel with dissipation devices. Both single wall and column-wall-column specimens were subjected to drifts up to 2% showing excellent performance, limiting the damage to the dissipating devices. One of the objectives of the experimental program was to assess the influence of construction detailing, and the dissipater connection in particular proved to have a significant influence on the wall’s response. The experimental programs on dissipaters and wall subassemblies provided exhaustive data for the validation and refinement of current analytical and numerical models. The current moment-rotation iterative procedure was refined accounting for detailed response parameters identified in the initial experimental stage. The refined analytical model proved capable of fitting the experimental result with good accuracy. A further stage in this research was the validation and refinement of numerical modelling approaches, which consisted in rotational spring and multi-spring models. Both the modelling approaches were calibrated versus the experimental results on post-tensioned walls subassemblies. In particular, the multi-spring model was further refined and implemented in OpenSEES to account for the full range of behavioural aspects of the systems. The multi-spring model was used in the final part of the dissertation to validate and refine current lateral force design procedures. Firstly, seismic performance factors in accordance to a Force-Based Design procedure were developed in accordance to the FEMA P-695 procedure through extensive numerical analyses. This procedure aims to determine the seismic reduction factor and over-strength factor accounting for the collapse probability of the building. The outcomes of this numerical analysis were also extended to other significant design codes. Alternatively, Displacement-Based Design can be used for the determination of the lateral load demand on a post-tensioned multi-storey timber building. The current DBD procedure was used for the development of a further numerical analysis which aimed to validate the procedure and identify the necessary refinements. It was concluded that the analytical and numerical models developed throughout this dissertation provided comprehensive and accurate tools for the determination of the lateral load response of post-tensioned wall systems, also allowing the provision of design parameters in accordance to the current standards and lateral force design procedures.

Research papers, University of Canterbury Library

One of the most controversial issues highlighted by the 2010-2011 Christchurch earthquake series and more recently the 2016 Kaikoura earthquake, has been the evident difficulty and lack of knowledge and guidelines for: a) evaluation of the residual capacity damaged buildings to sustain future aftershocks; b) selection and implementation of a series of reliable repairing techniques to bring back the structure to a condition substantially the same as prior to the earthquake; and c) predicting the cost (or cost-effectiveness) of such repair intervention, when compared to fully replacement costs while accounting for potential aftershocks in the near future. As a result of such complexity and uncertainty (i.e., risk), in combination with the possibility (unique in New Zealand when compared to most of the seismic-prone countries) to rely on financial support from the insurance companies, many modern buildings, in a number exceeding typical expectations from past experiences at an international level, have ended up being demolished. This has resulted in additional time and indirect losses prior to the full reconstruction, as well as in an increase in uncertainty on the actual relocation of the investment. This research project provides the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information to assess the residual capacity of damage reinforced concrete buildings, and to evaluate the feasibility of repairing techniques, in order to support their delicate decision-making process of repair vs. demolition or replacement. Literature review on effectiveness of epoxy injection repairs, as well as experimental tests on full-scale beam-column joints shows that repaired specimens have a reduced initial stiffness compared with the undamaged specimen, with no apparent strength reduction, sometimes exhibiting higher displacement ductility capacities. Although the bond between the steel and concrete is only partially restored, it still allows the repaired specimen to dissipate at least the same amount of hysteretic energy. Experimental tests on buildings subjected to earthquake loading demonstrate that even for severe damage levels, the ability of the epoxy injection to restore the initial stiffness of the structure is significant. Literature review on damage assessment and repair guidelines suggests that there is consensus within the international community that concrete elements with cracks less than 0.2 mm wide only require cosmetic repairs; epoxy injection repairs of cracks less and 2.0 mm wide and concrete patching of spalled cover concrete (i.e., minor to moderate damage) is an appropiate repair strategy; and for severe damaged components (e.g., cracks greater than 2.0 mm wide, crushing of the concrete core, buckling of the longitudinal reinforcement) local replacement of steel and/or concrete in addition to epoxy crack injection is more appropriate. In terms of expected cracking patterns, non-linear finite element investigations on well-designed reinforced concrete beam-to-column joints, have shown that lower number of cracks but with wider openings are expected to occur for larger compressive concrete strength, f’c, and lower reinforcement content, ρs. It was also observed that the tensile concrete strength, ft, strongly affects the expected cracking pattern in the beam-column joints, the latter being more uniformly distributed for lower ft values. Strain rate effects do not seem to play an important role on the cracking pattern. However, small variations in the cracking pattern were observed for low reinforcement content as it approaches to the minimum required as per NZS 3101:2006. Simple equations are proposed in this research project to relate the maximum and residual crack widths with the steel strain at peak displacement, with or without axial load. A literature review on fracture of reinforcing steel due to low-cycle fatigue, including recent research using steel manufactured per New Zealand standards is also presented. Experimental results describing the influence of the cyclic effect on the ultimate strain capacity of the steel are also discussed, and preliminary equations to account for that effect are proposed. A literature review on the current practice to assess the seismic residual capacity of structures is also presented. The various factors affecting the residual fatigue life at a component level (i.e., plastic hinge) of well-designed reinforced concrete frames are discussed, and equations to quantify each of them are proposed, as well as a methodology to incorporate them into a full displacement-based procedure for pre-earthquake and post-earthquake seismic assessment.

Research papers, University of Canterbury Library

The purpose of this thesis is to conduct a detailed examination of the forward-directivity characteristics of near-fault ground motions produced in the 2010-11 Canterbury earthquakes, including evaluating the efficacy of several existing empirical models which form the basis of frameworks for considering directivity in seismic hazard assessment. A wavelet-based pulse classification algorithm developed by Baker (2007) is firstly used to identify and characterise ground motions which demonstrate evidence of forward-directivity effects from significant events in the Canterbury earthquake sequence. The algorithm fails to classify a large number of ground motions which clearly exhibit an early-arriving directivity pulse due to: (i) incorrect pulse extraction resulting from the presence of pulse-like features caused by other physical phenomena; and (ii) inadequacy of the pulse indicator score used to carry out binary pulse-like/non-pulse-like classification. An alternative ‘manual’ approach is proposed to ensure 'correct' pulse extraction and the classification process is also guided by examination of the horizontal velocity trajectory plots and source-to-site geometry. Based on the above analysis, 59 pulse-like ground motions are identified from the Canterbury earthquakes , which in the author's opinion, are caused by forward-directivity effects. The pulses are also characterised in terms of their period and amplitude. A revised version of the B07 algorithm developed by Shahi (2013) is also subsequently utilised but without observing any notable improvement in the pulse classification results. A series of three chapters are dedicated to assess the predictive capabilities of empirical models to predict the: (i) probability of pulse occurrence; (ii) response spectrum amplification caused by the directivity pulse; (iii) period and amplitude (peak ground velocity, PGV) of the directivity pulse using observations from four significant events in the Canterbury earthquakes. Based on the results of logistic regression analysis, it is found that the pulse probability model of Shahi (2013) provides the most improved predictions in comparison to its predecessors. Pulse probability contour maps are developed to scrutinise observations of pulses/non-pulses with predicted probabilities. A direct comparison of the observed and predicted directivity amplification of acceleration response spectra reveals the inadequacy of broadband directivity models, which form the basis of the near-fault factor in the New Zealand loadings standard, NZS1170.5:2004. In contrast, a recently developed narrowband model by Shahi & Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods. The significant positive bias demonstrated by the residuals associated with all models at longer vibration periods (in the Mw7.1 Darfield and Mw6.2 Christchurch earthquakes) is likely due to the influence of basin-induced surface waves and non-linear soil response. Empirical models for the pulse period notably under-predict observations from the Darfield and Christchurch earthquakes, inferred as being a result of both the effect of nonlinear site response and influence of the Canterbury basin. In contrast, observed pulse periods from the smaller magnitude June (Mw6.0) and December (Mw5.9) 2011 earthquakes are in good agreement with predictions. Models for the pulse amplitude generally provide accurate estimates of the observations at source-to-site distances between 1 km and 10 km. At longer distances, observed PGVs are significantly under-predicted due to their slower apparent attenuation. Mixed-effects regression is employed to develop revised models for both parameters using the latest NGA-West2 pulse-like ground motion database. A pulse period relationship which accounts for the effect of faulting mechanism using rake angle as a continuous predictor variable is developed. The use of a larger database in model development, however does not result in improved predictions of pulse period for the Darfield and Christchurch earthquakes. In contrast, the revised model for PGV provides a more appropriate attenuation of the pulse amplitude with distance, and does not exhibit the bias associated with previous models. Finally, the effects of near-fault directivity are explicitly included in NZ-specific probabilistic seismic hazard analysis (PSHA) using the narrowband directivity model of Shahi & Baker (2011). Seismic hazard analyses are conducted with and without considering directivity for typical sites in Christchurch and Otira. The inadequacy of the near-fault factor in the NZS1170.5: 2004 is apparent based on a comparison with the directivity amplification obtained from PSHA.