Search

found 769 results

Videos, UC QuakeStudies

A video about the discovery of a historic tramline on North Avon Road. The video includes an interview with Brent Leersynder, a site engineer for SCIRT, and Steve Timpson, site foreman for SCIRT. The SCIRT team found the tramline while repairing the damaged wastewater system under North Avon Road in May.

Articles, UC QuakeStudies

This thesis was completed by Abigail Thompson for her Master of Architecture (Professional) at the University of Auckland in 2012. It was initiated with the aim of the addressing the destruction of many Christchurch buildings following the earthquakes, and investigates the role of architecture in public memory and ways of reconnecting people with the city. Note that some images in the thesis have been obscured in order to avoid copyright infringement.

Audio, Radio New Zealand

A Christchurch primary school is moving into its permanent new home today, nine years after cliffs behind it collapsed during the city's earthquakes. Redcliffs School subsequently moved to a temporary location in the suburb of Sumner, but the new location will mean the school will return home to Redcliffs, after a land swap with the local park. The move comes after in 2016, the then National Government, overturned its own decision to close the school. Christchurch reporter Anan Zaki spoke to principal Rose McInerney ahead of today's move.

Research papers, The University of Auckland Library

The seismic performance of soil profiles with potentially liquefiable deposits is a complex phenomenon that requires a thorough understanding of the soil properties and ground motion characteristics. The limitations of simplified liquefaction assessment methods have prompted an increase in the use of non-linear dynamic analysis methods. Focusing on onedimensional site response of a soil column, this thesis validated a soil constitutive model using in-situ pore pressure measurements and then assessed the influence of input ground motion characteristics on soil column response using traditional and newly developed metrics. Pore pressure recordings during the Canterbury Earthquake Sequence (CES) in New Zealand were used to validate the PM4Sand constitutive model. Soil profile characterization was key to accurate prediction of excess pore pressure response and accounting for any densification during the CES. Response during multiple earthquakes was captured effectively and cross-layer interaction demonstrated the model capability to capture soil response at the system-level. Synthetic and observed ground motions from the Christchurch earthquake were applied to the validated soil column to quantify the performance of synthetic motions. New metrics were developed to facilitate a robust comparison to assess performance. The synthetic input motions demonstrated a slightly larger acceleration and excess pore pressure response compared to the observed input motions. The results suggest that the synthetic motions may accumulate higher excess pore pressure at a faster rate and with fewer number of cycles in the shear response. This research compares validated soil profile subject to spectrally-matched pulse and non-pulse motions, emphasizing the inclusion of pulse motions with distinctive characteristics in ground motion suites for non-linear dynamic analysis. However, spectral matching may lead to undesired alterations in pulse characteristics. Cumulative absolute velocity and significant duration significantly differed between these two groups compared to the other key characteristics and contributed considerably to the liquefaction response. Unlike the non-pulse motions, not all of the pulse motions triggered liquefaction, likely due to their shorter significant duration. Non-pulse motions developed a greater spatial extent of liquefaction triggering in the soil profile and extended to a greater depth.

Images, UC QuakeStudies

A photograph of the former site of a house at 58 Bangor Street. The house was demolished after the land was zoned Red. The grass has begun to grow over the site. The house behind has also been demolished, so that Oxford Terrace is now visible in the distance.

Images, UC QuakeStudies

A photograph of the former sites of several houses on Bangor Street. The houses were demolished after the land was zoned Red. A stake has been placed in the ground to the left. A message written on the stake reads, "412 Oxford Terrace waste water". Grass has begun to grow in the empty sites.

Images, UC QuakeStudies

A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. Wire fencing has been placed around the outside of the neighbouring property. The photographer comments, "The house was deconstructed and rebuilt on another site".

Images, UC QuakeStudies

A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. Wire fencing has been placed around the outside of the neighbouring property. The photographer comments, "The house was deconstructed and rebuilt on another site".

Research Papers, Lincoln University

Liquefaction features and the geologic environment in which they formed were carefully studied at two sites near Lincoln in southwest Christchurch. We undertook geomorphic mapping, excavated trenches, and obtained hand cores in areas with surficial evidence for liquefaction and areas where no surficial evidence for liquefaction was present at two sites (Hardwick and Marchand). The liquefaction features identified include (1) sand blows (singular and aligned along linear fissures), (2) blisters or injections of subhorizontal dikes into the topsoil, (3) dikes related to the blows and blisters, and (4) a collapse structure. The spatial distribution of these surface liquefaction features correlates strongly with the ridges of scroll bars in meander settings. In addition, we discovered paleoliquefaction features, including several dikes and a sand blow, in excavations at the sites of modern liquefaction. The paleoliquefaction event at the Hardwick site is dated at A.D. 908-1336, and the one at the Marchand site is dated at A.D. 1017-1840 (95% confidence intervals of probability density functions obtained by Bayesian analysis). If both events are the same, given proximity of the sites, the time of the event is A.D. 1019-1337. If they are not, the one at the Marchand site could have been much younger. Taking into account a preliminary liquefaction-triggering threshold of equivalent peak ground acceleration for an Mw 7.5 event (PGA7:5) of 0:07g, existing magnitude-bounded relations for paleoliquefaction, and the timing of the paleoearthquakes and the potential PGA7:5 estimated for regional faults, we propose that the Porters Pass fault, Alpine fault, or the subduction zone faults are the most likely sources that could have triggered liquefaction at the study sites. There are other nearby regional faults that may have been the source, but there is no paleoseismic data with which to make the temporal link.