Search

found 214 results

Images, UC QuakeStudies

A view across Cambridge Terrace to the former Canterbury Public Library. Masonry from the building's corners and end gable has fallen onto the footpath and the base of the building has been cordoned off with wire fencing.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers. The top section of the building has crumbled, the masonry spilling onto the footpath. Wire fencing has been placed around the building as a cordon.

Research papers, The University of Auckland Library

The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Avonmore House on the corner of Hereford Street and Latimer Square. Large cracks have formed in the building, causing sections of the masonry to crumble. The windows on the Hereford Street side of the building have bent out of shape and many of the glass panes have shattered. USAR codes have been spray painted on the column next to the door. In the distance wire fencing has been placed across the street as a cordon.

Images, UC QuakeStudies

A view across the corner of London and Canterbury Streets to the Ground Culinary Centre. Large sections of the building's walls have cracked and collapsed, spilling masonry onto the footpath. Wire fencing has been placed around the building as a cordon.

Images, UC QuakeStudies

A view across Oxford Street in Lyttelton to the former Lyttelton Public Library, cordoned off with wire fencing. Masonry from the top of the building has collapsed onto the footpath. The former Lyttelton Fire Station building can be seen to the right.

Research papers, The University of Auckland Library

Churches are an important part of New Zealand's historical and architectural heritage. Various earthquakes around the world have highlighted the significant seismic vulnerability of religious buildings, with the extensive damage that occurred to stone and clay-brick unreinforced masonry churches after the 2010-2011 Canterbury earthquakes emphasising the necessity to better understand this structural type. Consequently, a country-wide inventory of unreinforced masonry churches is here identified. After a bibliographic and archival investigation, and a 10 000 km field trip, it is estimated that currently 297 unreinforced masonry churches are present throughout New Zealand, excluding 12 churches demolished in Christchurch because of heavy damage sustained during the Canterbury earthquake sequence. The compiled database includes general information about the buildings, their architectural features and structural characteristics, and any architectural and structural transformations that have occurred in the past. Statistics about the occurrence of each feature are provided and preliminary interpretations of their role on seismic vulnerability are discussed. The list of identified churches is reported in annexes, supporting their identification and providing their address.

Research papers, The University of Auckland Library

New Zealand’s stock of unreinforced masonry (URM) bearing wall buildings was principally constructed between 1880 and 1935, using fired clay bricks and lime or cement mortar. These buildings are particularly vulnerable to horizontal loadings such as those induced by seismic accelerations, due to a lack of tensile force-resisting elements in their construction. The poor seismic performance of URM buildings was recently demonstrated in the 2011 Christchurch earthquake, where a large number of URM buildings suffered irreparable damage and resulted in a significant number of fatalities and casualties. One of the predominant failure modes that occurs in URM buildings is diagonal shear cracking of masonry piers. This diagonal cracking is caused by earthquake loading orientated parallel to the wall surface and typically generates an “X” shaped crack pattern due to the reversed cyclic nature of earthquake accelerations. Engineered Cementitious Composite (ECC) is a class of fiber reinforced cement composite that exhibits a strain-hardening characteristic when loaded in tension. The tensile characteristics of ECC make it an ideal material for seismic strengthening of clay brick unreinforced masonry walls. Testing was conducted on 25 clay brick URM wallettes to investigate the increase in shear strength for a range of ECC thicknesses applied to the masonry wallettes as externally bonded shotcrete reinforcement. The results indicated that there is a diminishing return between thickness of the applied ECC overlay and the shear strength increase obtained. It was also shown that, the effectiveness of the externally bonded reinforcement remained constant for one and two leaf wallettes, but decreased rapidly for wall thicknesses greater than two leafs. The average pseudo-ductility of the strengthened wallettes was equal to 220% of that of the as-built wallettes, demonstrating that ECC shotcrete is effective at enhancing both the in-plane strength and the pseudo-ductility of URM wallettes. AM - Accepted Manuscript

Images, UC QuakeStudies

The damaged Cranmer Courts on the corner of Kilmore and Montreal Streets. The corner of the building has crumbled onto the street, which is now littered with broken masonry. Wire fencing placed around the building after the 4 September 2010 earthquake has managed to keep the debris away from the road.

Audio, Radio New Zealand

The Royal Commission into the Canterbury Earthquakes has heard evidence questioning the measure used to judge how resistant a building is to earthquake damage. It's come on the second day of hearings into why unreinforced masonry buildings collapsed in Christchurch during the February 22nd earthquake, killing 40 people.

Research papers, The University of Auckland Library

Test results are presented for wall-diaphragm plate anchor connections that were axially loaded to rupture. These connection samples were extracted post-earthquake by sorting through the demolition debris from unreinforced masonry (URM) buildings damaged in the Christchurch earthquakes. Unfortunately the number of samples available for testing was small due to the difficulties associated with sample collection in an environment of continuing aftershocks and extensive demolition activity, when personal safety combined with commercial activity involving large demolition machinery were imperatives that inhibited more extensive sample collection for research purposes. Nevertheless, the presented data is expected to be of assistance to structural engineers undertaking seismic assessment of URM buildings that have existing wall-diaphragm anchor plate connections installed, where it may be necessary to estimate the capacity of the existing connection as an important parameter linked with determining the current seismic capacity of the building and therefore influencing the decision regarding whether supplementary connections should be installed.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cathedral of the Blessed Sacrament on Barbadoes Street. The tower on the right has crumbled and the masonry has fallen to the pavement below. A car has been crushed by the fallen rubble. The dome of the left tower has collapsed and the cross at the top of the building is on a lean.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Iconic bar on the corner of Manchester and Gloucester Streets. Large sections of the outer walls have collapsed, the bricks and masonry spilling onto the footpath below, crushing several cars. USAR codes have been spray-painted near the door and a red sticker has been taped above. The red sticker indicates that the building is unsafe to enter.

Images, UC QuakeStudies

The A and T Burt building on Ferry Road in Woolston. Bricks from the top section of the building have fallen away. Signs advertising two businesses housed in the building, Superheat and Junk and Disorderly, can be seen sitting in front of it. The footpath is covered with brick dust and small pieces of masonry from when the larger pieces were cleared away.

Images, UC QuakeStudies

Damage to the church hall of St John the Baptist Church in Latimer Square. The roof has been weather proofed with plywood and there are cracks in the buildings masonry. The remains of fallen bricks can be seen on the footpath. A safety fence has been erected around the building.

Images, UC QuakeStudies

Damage to the church hall of St John the Baptist Church in Latimer Square. The roof has been weather proofed with plywood and there are cracks in the buildings masonry. The remains of fallen bricks can be seen on the footpath. A safety fence has been erected around the building.

Images, UC QuakeStudies

The southern side of the Christ Church Cathedral with boarded up windows and damage to the roof above both of the transepts. Damaged masonry has been piled on the ground in front and one of the spires has been removed and braced with steel in the foreground.