Search

found 222 results

Videos, UC QuakeStudies

A video of a presentation by Thomas Petschner during the Resilience and Response Stream of the 2016 People in Disasters Conference. The presentation is titled, "Medical Clowning in Disaster Zones".The abstract for this presentation reads as follows: To be in a crisis caused by different kinds of natural disasters (as well as a man made incidents), dealing with ongoing increase of problems and frequent confrontation with very bad news isn't something that many people can easily cope with. This applies obviously to affected people but also to the members of SAR teams, doctors in the field and the experienced humanitarians too. The appropriate use of humour in crisis situations and dis-functional environments is a great tool to make those difficult moments more bearable for everyone. It helps injured and traumatised people cope with what they're facing, and can help them to recover more quickly too. At the same time humorous thinking can help to solve some of the complex problems emergency responders face. This is in addition to emergency and medical only reactions - allowing for a more holistic human perspective, which can provide a positive lasting effect. The ability to laugh is hardwired into our systems bringing a huge variety of physical, mental and social benefits. Even a simple smile can cultivate optimism and hope, while laughter can boost a hormone cocktail - which helps to cope with pain, enhance the immune system, reduce stress, re-focus, connect and unite people during difficult times. Humour as an element of psychological response in crisis situations is increasingly understood in a much wider sense: as the human capacity to plan and achieve desired outcomes with less stress, thus resulting in more 'predictable' work in unpredictable situations. So, if we approach certain problems in the same way Medical Clowns do, we may find a more positive solution. Everyone knows that laughter is an essential component of a healthy, happy life. The delivery of 'permission to laugh' into disaster zones makes a big difference to the quality of life for everyone, even if it's for a very short, but important period of time. And it's crucial to get it right as there is no second chance for the first response.

Research papers, University of Canterbury Library

In this paper, we perform hybrid broadband (0-10 Hz) ground motion simulations for the ten most significant events (Mw 4.7-7.1) in the 2010-2011 Canterbury earthquake sequence. Taking advantage of having repeated recordings at same stations, we validate our simulations using both recordings and an empirically-developed ground motion prediction equation (GMPE). The simulation clearly captures the sedimentary basin amplification and the rupture directivity effects. Quantitative comparisons of the simulations with both recordings and the GMPE, as well as analyses of the total residuals (indicating model bias) show that simulations perform better than the empirical GMPE, especially for long period. To scrutinize the ground motion variability, we partitioned the total residuals into different components. The total residual appears to be unbiased, and the use of a 3D velocity structure reduces the long period systematic bias particularly for stations located close to the Banks Peninsula volcanic area.

Videos, UC QuakeStudies

A video of a presentation by Matthew Pratt during the Resilience and Response Stream of the 2016 People in Disasters Conference. The presentation is titled, "Investing in Connectedness: Building social capital to save lives and aid recovery".The abstract for this presentation reads as follows: Traditionally experts have developed plans to prepare communities for disasters. This presentation discusses the importance of relationship-building and social capital in building resilient communities that are both 'prepared' to respond to disaster events, and 'enabled' to lead their own recovery. As a member of the Canterbury Earthquake Recovery Authority's Community Resilience Team, I will present the work I undertook to catalyse community recovery. I will draw from case studies of initiatives that have built community connectedness, community capacity, and provided new opportunities for social cohesion and neighbourhood planning. I will compare three case studies that highlight how social capital can aid recovery. Investment in relationships is crucial to aid preparedness and recovery.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading in large seismic events often results in pervasive and costly damage to engineering structures and lifelines, making it a critical component of engineering design. However, the complex nature of this phenomenon leads to designing for such a hazard extremely challenging and there is a clear for an improved understanding and predicting liquefaction-induced lateral spreading. The 2010-2011 Canterbury (New Zealand) Earthquakes triggered severe liquefaction-induced lateral spreading along the streams and rivers of the Christchurch region, causing extensive damage to roads, bridges, lifelines, and structures in the vicinity. The unfortunate devastation induced from lateral spreading in these events also rendered the rare opportunity to gain an improved understanding of lateral spreading displacements specific to the Christchurch region. As part of this thesis, the method of ground surveying was employed following the 4 September 2010 Darfield (Mw 7.1) and 22 February 2011 Christchurch (Mw 6.2) earthquakes at 126 locations (19 repeated) throughout Christchurch and surrounding suburbs. The method involved measurements and then summation of crack widths along a specific alignment (transect) running approximately perpendicular to the waterway to indicate typically a maximum lateral displacement at the bank and reduction of the magnitude of displacements with distance from the river. Rigorous data processing and comparisons with alternative measurements of lateral spreading were performed to verify results from field observations and validate the method of ground surveying employed, as well as highlight the complex nature of lateral spreading displacements. The welldocumented field data was scrutinized to gain an understanding of typical magnitudes and distribution patterns (distribution of displacement with distance) of lateral spreading observed in the Christchurch area. Maximum displacements ranging from less than 10 cm to over 3.5 m were encountered at the sites surveyed and the area affected by spreading ranged from less than 20 m to over 200 m from the river. Despite the highly non-uniform displacements, four characteristic distribution patterns including large, distributed ground displacements, block-type movements, large and localized ground displacements, and areas of little to no displacements were identified. Available geotechnical, seismic, and topographic data were collated at the ground surveying sites for subsequent analysis of field measurements. Two widely-used empirical models (Zhang et al. (2004), Youd et al. (2002)) were scrutinized and applied to locations in the vicinity of field measurements for comparison with model predictions. The results indicated generally poor correlation (outside a factor of two) with empirical predictions at most locations and further validated the need for an improved, analysis- based method of predicting lateral displacements that considers the many factors involved on a site-specific basis. In addition, the development of appropriate model input parameters for the Youd et al. (2002) model led to a site-specific correlation of soil behavior type index, Ic, and fines content, FC, for sites along the Avon River in Christchurch that matched up well with existing Ic – FC relationships commonly used in current practice. Lastly, a rigorous analysis was performed for 25 selected locations of ground surveying measurements along the Avon River where ground slope conditions are mild (-1 to 2%) and channel heights range from about 2 – 4.5 m. The field data was divided into categories based on the observed distribution pattern of ground displacements including: large and distributed, moderate and distributed, small to negligible, and large and localized. A systematic approach was applied to determine potential critical layers contributing to the observed displacement patterns which led to the development of characteristic profiles for each category considered. The results of these analyses outline an alternative approach to the evaluation of lateral spreading in which a detailed geotechnical analysis is used to identify the potential for large spreading displacements and likely spatial distribution patterns of spreading. Key factors affecting the observed magnitude and distribution of spreading included the thickness of the critical layer, relative density, soil type and layer continuity. It was found that the large and distributed ground displacements were associated with a thick (1.5 – 2.5 m) deposit of loose, fine to silty sand (qc1 ~4-7 MPa, Ic 1.9-2.1, qc1n_cs ~50-70) that was continuous along the bank and with distance from the river. In contrast, small to negligible displacements were characterized by an absence of or relatively thin (< 1 m), discontinuous critical layer. Characteristic features of the moderate and distributed displacements were found to be somewhere between these two extremes. The localized and large displacements showed a characteristic critical layer similar to that observed in the large and distributed sites but that was not continuous and hence leading to the localized zone of displacement. The findings presented in this thesis illustrate the highly complex nature of lateral displacements that cannot be captured in simplified models but require a robust geotechnical analysis similar to that performed for this research.

Articles, Christchurch uncovered

Following on from last week’s blog post, when we discovered a tea set used by a local 19th century caterer &#8211; this time we will take a closer look at what catering may have been like for the Victorians. Prior &#8230; Continue reading &#8594;

Articles, Christchurch uncovered

As life-changing experiences go, the earthquake on 22 February 2011 was fairly significant. On the one hand, our house was red-zoned (but still liveable), friends lost their lives and the city lost many of the old buildings that, for me, &#8230; Continue reading &#8594;

Articles, UC QuakeStudies

A plan which defines the framework for performance measurement to align SCIRT with the objectives from the Alliance Agreement objectives. The first version of this plan was produced on 20 August 2011.

Videos, UC QuakeStudies

A video of a presentation by Jane Murray and Stephen Timms during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Land Use Recovery Plan: How an impact assessment process engaged communities in recovery planning".The abstract for this presentation reads as follows: In response to the Canterbury earthquakes, the Minister for Canterbury Earthquake Recovery directed Environment Canterbury (Canterbury's regional council) to prepare a Land Use Recovery Plan that would provide a spatial planning framework for Greater Christchurch and aid recovery from the Canterbury earthquakes. The Land Use Recovery Plan sets a policy and planning framework necessary to rebuild existing communities and develop new communities. As part of preparing the plan, an integrated assessment was undertaken to address wellbeing and sustainability concerns. This ensured that social impacts of the plan were likely to achieve better outcomes for communities. The process enabled a wide range of community and sector stakeholders to provide input at the very early stages of drafting the document. The integrated assessment considered the treatment of major land use issues in the plan, e.g. overall distribution of activities across the city, integrated transport routes, housing typography, social housing, employment and urban design, all of which have a key impact on health and wellbeing. Representatives from the Canterbury Health in All Policies Partnership were involved in designing a three-part assessment process that would provide a framework for the Land Use Recovery Plan writers to assess and improve the plan in terms of wellbeing and sustainability concerns. The detail of these assessment stages, and the influence that they had on the draft plan, will be outlined in the presentation. In summary, the three stages involved: developing key wellbeing and sustainability concerns that could form a set of criteria, analysing the preliminary draft of the Land Use Recovery Plan against the criteria in a broad sector workshop, and analysing the content and recommendations of the Draft Plan. This demonstrates the importance of integrated assessment influencing the Land Use Recovery Plan that in turn influences other key planning documents such as the District Plan. This process enabled a very complex document with wide-ranging implications to be broken down, enabling many groups, individuals and organisations to have their say in the recovery process. There is also a range of important lessons for recovery that can be applied to other projects and actions in a disaster recovery situation.

Research papers, University of Canterbury Library

This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. The need to better understand the behaviour of diaphragms in timber buildings was highlighted by the recent 2010-2011 Canterbury Earthquake series, where a number of diaphragms in traditional concrete buildings performed poorly, compromising the lateral load resistance of the structure. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The recent demand of mid-rise commercial timber buildings of ten storeys and beyond has further highlighted the lack of appropriate methods to analyse timber diaphragms with irregular floor geometries and large spans made of both light timber framing and massive timber panels. Due to the lower stiffness of timber lateral load resisting systems, compared with traditional construction materials, and the addition of in-plane flexible diaphragms, the effect of higher modes on the global dynamic behaviour of a structure becomes more critical. The results from a parametric non-linear time-history analysis on a series of timber frame and wall structures showed increased storey shear and moment demands even for four storey structures when compared to simplistic equivalent static analysis. This effect could successfully be predicted with methods available in literature. The presence of diaphragm flexibility increased diaphragm inter-storey drifts and the peak diaphragm demand in stiff wall structures, but had less influence on the storey shears and moments. Diaphragm force demands proved to be significantly higher than the forces derived from equivalent static analysis, leading to potentially unsafe designs. It is suggested to design all diaphragms for the same peak demand; a simplified approach to estimate these diaphragm forces is proposed for both frame and wall structures. Modern architecture often requires complex floor geometries with long spans leading to stress concentrations, high force demands and potentially large deformations in the diaphragms. There is a lack of guidance and regulation regarding the analysis and design of timber diaphragms and a practical alternative to the simplistic equivalent deep beam analysis or costly finite element modelling is required. An Equivalent Truss Method for the analysis of both light timber framed and massive timber diaphragms is proposed, based on analytical formulations and verified against finite element models. With this method the panel unit shear forces (shear flow) and therefore the fastener demand, chord forces and reaction forces can be evaluated. Because the panel stiffness and fastener stiffness are accounted for, diaphragm deflection, torsional effects and transfer forces can also be assessed. The proposed analysis method is intuitive and can be used with basic analysis software. If required, it can easily be adapted for the use with diaphragms working in the non-linear range. Damage to floor diaphragms resulting from displacement incompatibilities due to frame elongation or out-of plane deformation of walls can compromise the transfer of inertial forces to the lateral load resisting system as well as the stability of other structural elements. Two post-tensioned timber frame structures under quasi-static cyclic and dynamic load, respectively, were tested with different diaphragm panel layouts and connections investigating their ability to accommodate frame elongations. Additionally, a post-tensioned timber wall was loaded under horizontal cyclic loads through two pairs of collector beams. Several different connection details between the wall and the beams were tested, and no damage to the collector beams or connections was observed in any of the tests. To evaluate the increased strength and stiffness due to the wall-beam interaction an analytical procedure is presented. Finally, a timber staircase core was tested under bi-directional loading. Different connection details were used to study the effect of displacement incompatibilities between the orthogonal collector beams. These experiments showed that floor damage due to displacement incompatibilities can be prevented, even with high levels of lateral drift, by the flexibility of well-designed connections and the flexibility of the timber elements. It can be concluded that the flexibility of timber members and the flexibility of their connections play a major role in the behaviour of timber buildings in general and of diaphragms specifically under seismic loads. The increased flexibility enhances higher mode effects and alters the diaphragm force demand. Simple methods are provided to account for this effect on the storey shear, moment and drift demands as well as the diaphragm force demands. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.

Articles, UC QuakeStudies

A plan which identifies items that will define value for the programme of work and explain processes that will measure the achievement of value outcomes. The first version of this plan was produced on 6 September 2011.

Videos, UC QuakeStudies

A video of a presentation by Jai Chung during the Staff and Patients Stream of the 2016 People in Disasters Conference. The presentation is titled, "A Systematic Review of Compassion Fatigue of Nurses During and After the Canterbury Earthquakes".The abstract for the presentation reads as follows: Limited research is currently available about compassion fatigue of health professionals during and after disasters in New Zealand. The purpose of this systematic literature review was to provide a comprehensive outline of existing research. National and international literature was compared and contrasted to determine the importance of recognising compassion fatigue during and after disasters. Health professionals responding to disasters have played an important role in saving lives. Especially, during and after the Canterbury earthquakes, many health professionals cared for the traumatized public of the region. When responding to and caring for many distressed people, health professionals - particularly nurses - may strongly empathise with people's pain, fear, and distress. Consequently, they can be affected both emotionally and physically. Nurses may experience intensive and extreme distress and trauma directly and indirectly. Physical exhaustion can arise quickly. Emotional exhaustion such as hopelessness and helplessness may lead to nurses losing the ability to nurture and care for people during disasters. This can lead to compassion fatigue. It is important to understand how health professionals, especially nurses, experience compassion fatigue in order to help them respond to disasters appropriately. International literature explains the importance of recognising compassion fatigue in nursing, and explores different coping mechanisms that assist nurses overcome or prevent this health problem. In contrast, New Zealand literature is limited to experiences of nurses' attitudes in responding to natural disasters. In light of this, this literature review will help to raise awareness about the importance of recognising and addressing symptoms of compassion fatigue in a profession such as nursing. Gaps within the research will also be identified along with recommendations for future research in this area, especially from a New Zealand perspective. Please note that due to a recording error the sound cuts out at 9 minutes.

Research papers, University of Canterbury Library

In this dissertation it is argued that the Canterbury Earthquake Recovery Act 2011 and the Canterbury Earthquake Recovery Authority were both necessary and inevitable given the trends and traditions of civil defence emergency management (CDEM) in New Zealand. The trends and traditions of civil defence are such that principles come before practice, form before function, and change is primarily brought about through crisis and criticism. The guiding question of the research was why were a new governance system and law made after the Canterbury earthquakes in 2010 and 2011? Why did this outcome occur despite the establishment of a modern emergency management system in 2002 which included a recovery framework that had been praised by international scholars as leading edge and a model for other countries? The official reason was the unprecedented scale and demands of the recovery – but a disaster of such scale is the principle reason for having a national emergency management system. Another explanation is the lack of cooperation among local authorities – but that raises the question of whether the CDEM recovery framework would have been successful in another locality. Consequentially, the focus of this dissertation is on the CDEM recovery framework and how New Zealand came to find itself making disaster law during a disaster. Recommendations include a review of emergency powers for recovery, a review of the capabilities needed to fulfil the mandate of Recovery Managers, and the establishment of a National Recovery Office with a cadre of Recovery Managers that attend every recovery to observe, advise, or assume control as needed. CDEM Group Recovery Managers would be seconded to the National Recovery Office which would allow for experience in recovery management to be developed and institutionalised through regular practice.

Research papers, University of Canterbury Library

The Canterbury Earthquakes of 2010 and 2011 and subsequent re-organisation and rebuilding of schools in the region is initiating a rapid transitioning from traditional classrooms and individual teaching to flexible learning spaces (FLS’s) and co-teaching. This transition is driven by the Ministry of Education property division who have specific guidelines for designing new schools, re-builds and the five and ten year property plan requirements. Boards of Trustees, school leaders and teachers are faced with the challenge of reconceptualising teaching and learning from private autonomous learning environments to co-teaching in Flexible Learning Spaces provisioned for 50 to 180 children and two to six teachers in a single space. This process involves risks and opportunities especially for teachers and children. This research project investigates the key components necessary to create effective co-teaching relationships and environments. It explores the lessons learnt from the 1970’s open plan era and the views of 40 experienced practitioners and leaders with two or more years’ experience working in collaborative teaching and learning environments in sixteen New Zealand and Australian schools. The research also considers teacher collaboration and co-teaching as evidenced in literature. The findings lead to the identification of eight key components required to create effective collaborative teaching and learning environments which are discussed using three themes of student centeredness, effective pedagogy and collaboration. Six key recommendations are provided to support the effective co-teaching in a flexible learning space: 1. Situate learners at the centre 2. Develop shared understanding about effective pedagogy in a FLS 3. Develop skills of collaboration 4. Implement specific co-teaching strategies 5. Analyse the impact of co-teaching strategies 6. Strategically prepare for change and the future

Videos, UC QuakeStudies

A video of a presentation by Dr Scott Miles during the Community Resilience Stream of the 2016 People in Disasters Conference. The presentation is titled, "A Community Wellbeing Centric Approach to Disaster Resilience".The abstract for this presentation reads as follows: A higher bar for advancing community disaster resilience can be set by conducting research and developing capacity-building initiatives that are based on understanding and monitoring community wellbeing. This presentation jumps off from this view, arguing that wellbeing is the most important concept for improving the disaster resilience of communities. The presentation uses examples from the 2010 and 2011 Canterbury earthquakes to illustrate the need and effectiveness of a wellbeing-centric approach. While wellbeing has been integrated in the Canterbury recovery process, community wellbeing and resilience need to guide research and planning. The presentation unpacks wellbeing in order to synthesize it with other concepts that are relevant to community disaster resilience. Conceptualizing wellbeing as either the opportunity for or achievement of affiliation, autonomy, health, material needs, satisfaction, and security is common and relatively accepted across non-disaster fields. These six variables can be systematically linked to fundamental elements of resilience. The wellbeing variables are subject to potential loss, recovery, and adaptation based on the empirically established ties to community identity, such as sense of place. Variables of community identity are what translate the disruption, damage, restoration, reconstruction, and reconfiguration of a community's different critical services and capital resources to different states of wellbeing across a community that has been impacted by a hazard event. With reference to empirical research and the Canterbury case study, the presentation integrates these insights into a robust framework to facilitate meeting the challenge of raising the standard of community disaster resilience research and capacity building through development of wellbeing-centric approaches.

Audio, Radio New Zealand

Beverly Forrester farms near Harden which is down the road from Hanmer Springs. Road damage means she's cut off from the outside world, apart from her phone Beverly was caught up in the Christchurch earthquake, so the events of the last 24hrs have been quite trying for her.

Videos, UC QuakeStudies

A video of the keynote-presentation by Dr Jeanne LeBlanc, Registered Psychologist, during the second plenary of the 2016 People in Disasters Conference. LeBlanc is a Registered Psychologist, specialising in Clinical Neuropsychology and Rehabilitation. She is the British Columbia Psychological Association (BCPA) Representative for the American Psychological Associate State, Territorial and Provincial Disaster Response Network, and has also been appointed as the Behavioural Health Liaison to the American Board of Disaster Medicine. The presentation is titled, "Machetes and Breadfruit: Medical disaster response challenges in unstable settings".The abstract for this presentation reads as follows: The January 2010 earthquake in Haiti resulted in a massive response to a setting which was already fraught with danger, causing a number of personal, logistical, and safety challenges to responding medical teams. This presentation will provide a first-person account of this experience from the perspective of a behavioural health professional, whose responsibility was both the overall emotional wellbeing of the medical responders, as well as those impacted by the quake. Unique 'lessons learned' by these response teams will be highlighted, and recommendations will be provided for responders considering deploying to future events in highly unstable areas.

Audio, Radio New Zealand

Kim Hill talks to Sam Crofskey, the owner of C1 Espresso in the Christchurch CBD, which reopened in 2012 after the Canterbury earthquakes and will celebrate its twentieth anniversary this year. He spoke on the WORD Christchurch panel, How Are We Doing, Christchurch?, and this week launched Let's Take a Walk, a pop-up book for children about the quakes that he created with his wife Fleur and illustrator Hannah Beehre. He is joined by Joseph Hullen (Ngai Tuahuriri, Ngai Tahu), a hunter gatherer, fisherman, explorer, kaitiaki and storyteller who has spent a lifetime gathering traditional kai and listening to stories about his hapu. He is a whakapapa researcher for Te Runanga o Ngai Tahu, and is leading three sold-out walking tours during WORD Christchurch along the banks of the Otakaro (Avon River), uncovering the city's history.

Research papers, University of Canterbury Library

Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.